Events News Research CBS CBS Publications Bioinformatics
Staff Contact About Internal CBS CBS Other

Output format



DESCRIPTION

Example of output is found below. The output is divided into the folowinng sections:
  • Description of training data
  • Prediction method
  • Parameters for training of Gibbs method
  • Prediction data
  • Evaluation of predictions (if assignments are supplied by user)
  • Predictions This section contain a line "Peptide Start res Motif Prediction (Assign) Sequence"
    Peptide: Peptide number
    Start res: 1st residue in motif
    Motif: Motif found in sequence
    Prediction: Prediction score for motif
    Assign: Assignment of sequence (if supplied by user)
    Sequence: Sequence containing motif



EXAMPLE OUTPUT

Description of training data

Length of motif: 9
Number of training data: 456
Number of positive training examples: 456

Parameters for training of Gibbs method

Clustering using the Henikoff & Henikoff 1/nr method
Weight on prior: 50.000000
Start temperature: 0.150000
End temperature: 0.000100
Number of temperature steps: 10.000000
Using default seed
Number of iterations per train example: 20
Using amino acid background distribution from SWISSPROT
Equal weights on all positions

Figure: Visualization of the binding motif using the logo program.
A short explanation of can be found here.


Alignment generated by Gibbs sampler
Matrix generated by Gibbs sampler

Prediction data

Number of evaluation data: 57
Predicting using a matrix method

Evaluation of predictions

Pearson coefficient for N= 57 data: -0.30553
Aroc value: 0.31622
Threshold for counting example as positive: 50.000000

Predictions

Peptide   Start res Motif       Prediction Assign Sequence
1         8         FWSFGSEDG    6.549     5.400  MASPGSGFWSFGSEDGSGDS
2         1         FGSEDGSGD    3.304    62.000  FGSEDGSGDSENPGRARAWC
3         6         ARAWCQVAQ    3.363   100.000  ENPGRARAWCQVAQKFTGGI
4         1         QVAQKFTGG    1.638   100.000  QVAQKFTGGIGNKLCALLYG
5         8         LYGDAEKPA    4.603   100.000  GNKLCALLYGDAEKPAESGG
6         7         ESGGSQPPR    1.463   100.000  DAEKPAESGGSQPPRAAARK
7         8         ARKAACACD    3.170   100.000  SQPPRAAARKAACACDQKPC
8         12        CSKVDVNYA   -1.160     2.400  AACACDQKPCSCSKVDVNYA
9         12        LHATDLLPA    6.138     0.500  SCSKVDVNYAFLHATDLLPA
10        2         LHATDLLPA    6.138     0.200  FLHATDLLPACDGERPTLAF
11        12        QDVMNILLQ    1.590   100.000  CDGERPTLAFLQDVMNILLQ
12        11        YVVKSFDRS    4.430     0.700  LQDVMNILLQYVVKSFDRST
13        1         YVVKSFDRS    4.430    19.000  YVVKSFDRSTKVIDFHYPNE
14        5         FHYPNELLQ    6.535     5.000  KVIDFHYPNELLQEYNWELA
15        7         WELADQPQN    7.249     5.000  LLQEYNWELADQPQNLEEIL
16        11        MHCQTTLKY    5.006   100.000  DQPQNLEEILMHCQTTLKYA
17        9         YAIKTGHPR    9.089   100.000  MHCQTTLKYAIKTGHPRYFN
18        8         YFNQLSTGL    5.320     0.500  IKTGHPRYFNQLSTGLDMVG
19        12        AADWLTSTA    1.734     1.400  QLSTGLDMVGLAADWLTSTA
20        5         WLTSTANTN    4.697    41.000  LAADWLTSTANTNMFTYEIA
21        5         FTYEIAPVF    3.031    85.000  NTNMFTYEIAPVFVLLEYVT
22        4         MREIIGWPG    7.542    48.000  LKKMREIIGWPGGSGDGIFS
23        9         FSPGGAISN    0.479    80.000  PGGSGDGIFSPGGAISNMYA
24        9         YAMMIARFK    3.854   100.000  PGGAISNMYAMMIARFKMFP
25        11        EVKEKGMAA    3.955    25.000  MMIARFKMFPEVKEKGMAAL
26        4         EKGMAALPR    4.336    40.000  EVKEKGMAALPRLIAFTSEH
27        6         FTSEHSHFS    8.330     0.200  PRLIAFTSEHSHFSLKKGAA
28        3         FSLKKGAAA    5.693   100.000  SHFSLKKGAAALGIGTDSVI
29        10        ILIKCDERG    1.002    24.000  ALGIGTDSVILIKCDERGKM
30        10        MIPSDLERR   -0.681   100.000  LIKCDERGKMIPSDLERRIL
31        8         RILEAKQKG    2.013    38.000  IPSDLERRILEAKQKGFVPF
32        10        FLVSATAGT    5.278     4.000  EAKQKGFVPFLVSATAGTTV
33        11        YGAFDPLLA    6.422     7.000  LVSATAGTTVYGAFDPLLAV
34        1         YGAFDPLLA    6.422   100.000  YGAFDPLLAVADICKKYKIW
35        10        WMHVDAAWG    9.248     2.700  ADICKKYKIWMHVDAAWGGG
36        1         MHVDAAWGG    1.533    43.000  MHVDAAWGGGLLMSRKHKWK
37        9         WKLSGVERA    7.137     0.800  LLMSRKHKWKLSGVERANSV
38        9         SVTWNPHKM    4.403    13.000  LSGVERANSVTWNPHKMMGV
39        5         HKMMGVPLQ    3.161    34.000  TWNPHKMMGVPLQCSALLVR
40        8         LVREEGLMQ    5.674    17.000  PLQCSALLVREEGLMQNCNQ
41        3         GLMQNCNQM    2.757    41.000  EEGLMQNCNQMHASYLFQQD
42        5         YLFQQDKHY    5.432    22.000  MHASYLFQQDKHYDLSYDTG
43        5         LSYDTGDKA    4.032    31.000  KHYDLSYDTGDKALQCGRHV
44        12        VFKLWLMWR    0.431   100.000  DKALQCGRHVDVFKLWLMWR
45        5         LWLMWRAKG    8.337    33.000  DVFKLWLMWRAKGTTGFEAH
46        7         FEAHVDKCL    2.003   100.000  AKGTTGFEAHVDKCLELAEY
47        12        YNIIKNREG    3.638    34.000  VDKCLELAEYLYNIIKNREG
48        2         YNIIKNREG    3.638     4.000  LYNIIKNREGYEMVFDGKPQ
49        2         EMVFDGKPQ    2.819    67.000  YEMVFDGKPQHTNVCFWYIP
50        7         WYIPPSLRT    5.691     0.600  HTNVCFWYIPPSLRTLEDNE
51        3         LRTLEDNEE    0.154     5.000  PSLRTLEDNEERMSRLSKVA
52        4         SRLSKVAPV    3.410   100.000  ERMSRLSKVAPVIKARMMEY
53        10        YGTTMVSYQ    2.533    10.000  PVIKARMMEYGTTMVSYQPL
54        3         TMVSYQPLG    1.012    10.000  GTTMVSYQPLGDKVNFFRMV
55        7         FRMVISNPA   11.762     0.700  GDKVNFFRMVISNPAATHQD
56        2         SNPAATHQD    3.258    65.000  ISNPAATHQDIDFLIEEIER
57        8         FLIEEIERL    3.306    20.000  ATHQDIDFLIEEIERLGQDL



GETTING HELP

Scientific problems:        Technical problems: