Dimension reduction: PCA and Clustering

By Hanne Jarmer

Slides by Christopher Workman
Center for Biological Sequence Analysis
DTU
The DNA Array Analysis Pipeline

Array design
 Probe design

Sample Preparation
 Hybridization

Buy Chip/Array

Question
 Experimental Design

Image analysis

Normalization

Comparable
 Gene Expression Data

Expression Index
 Calculation

Statistical Analysis
 Fit to Model (time series)

Advanced Data Analysis
 Clustering PCA
 Classification
 Promoter Analysis
 Meta analysis
 Survival analysis
 Regulatory Network
The DNA Array Analysis Pipeline

Array design
Probe design

Sample Preparation
Hybridization

Image analysis

Normalization

Comparable
Gene Expression Data

Expression Index
Calculation

Statistical Analysis
Fit to Model (time series)

Advanced Data Analysis
Clustering PCA
Classification
Promoter Analysis
Meta analysis
Survival analysis
Regulatory Network

Question
Experimental Design

Buy Chip/Array
What is Principal Component Analysis (PCA)?

• Numerical method
• Dimensionality reduction technique
• Primarily for visualization of arrays/samples
• ”Unsupervised” method used to explore the intrinsic variability of the data
PCA

- Performs a rotation of the data that maximizes the variance in the new axes
- Projects high dimensional data into a low dimensional sub-space (visualized in 2-3 dims)
- Often captures much of the total data variation in a few dimensions (< 5)
- Exact solutions require a fully determined system (matrix with full rank)
 - i.e. A “square” matrix with independent rows
Principal components

- **1st Principal component (PC1)**
 - Direction along which there is greatest variation

- **2nd Principal component (PC2)**
 - Direction with maximum variation left in data, orthogonal to PC1
Singular Value Decomposition

- An implementation of PCA
- Defined in terms of matrices:

\[X = USV^T \]

- \(X \) is the expression data matrix
- \(U \) are the left eigenvectors
- \(V \) are the right eigenvectors
- \(S \) are the singular values (\(S^2 = \Lambda \))
Singular Value Decomposition

\[X = USV^T \]
Singular Value Decomposition

• Requirements:
 – No missing values
 – “Centered” observations, i.e. normalize data such that each gene has mean = 0
PCA projections (as XY-plot)
Related methods

• Factor Analysis*
• Multidimensional scaling (MDS)
• Generalized multidimensional scaling (GMDS)
• Semantic mapping
• Isomap
• Independent component analysis (ICA)

* Factor analysis is often confused with PCA though the two methods are related but distinct. Factor analysis is equivalent to PCA if the error terms in the factor analysis model are assumed to all have the same variance.
Why do we cluster?

- Organize observed data into meaningful structures
- Summarize large data sets
- Used when we have no *a priori* hypotheses

- Optimization:
 - Minimize within cluster distances
 - Maximize between cluster distances
Many types of clustering methods

- **Method:**
 - K-class
 - Hierarchical, e.g. UPGMA
 - Agglomerative (bottom-up) ... all alone ... join ...
 - Divisive (top-down) ... all together ... split ...
 - Graph theoretic

- **Information used:**
 - Supervised vs unsupervised

- **Final description of the items:**
 - Partitioning vs non-partitioning
 - fuzzy, multi-class
Hierarchical clustering

• Representation of all pair-wise distances
• Parameters: none (distance measure)
• Results:
 – One large cluster
 – Hierarchical tree (dendrogram)
• Deterministic
Hierarchical clustering – UPGMA Algorithm

- Assign each item to its own cluster
- Join the nearest clusters
- Re-estimate the distance between clusters
- Repeat for 1 to n

Unweighted Pair Group Method with Arithmetic Mean
Hierarchical clustering
Hierarchical clustering
Hierarchical Clustering

Data with clustering order and distances

2D data is a special (simple) case!

Dendrogram representation
Hierarchical Clustering

Original data space

Merging steps define a dendrogram
K-means - Algorithm

Begin

Assign each item a class in 1 to K (randomly)

For 1 to max-iteration {

 For each class 1 to K {
 Calculate centroid (one of the “K means”)
 Calculate distance from centroid to each item
 }

 Assign each item the class of the nearest centroid

 Exit if no items are re-assigned (convergence)

}

End

K-mean clustering, $K=3$
K-mean clustering, $K=3$
K-mean clustering, $K=3$
K-Means

Circles: “prototypes” (parameters to fit)
Squares: data points
K-means clustering
Cell Cycle data
Self Organizing Maps (SOM)

- Partitioning method
 (similar to the K-means method)

- Clusters are organized in a two-dimensional grid

- Size of grid must be specified
 – (eg. 2x2 or 3x3)

- SOM algorithm finds the optimal organization of data in the grid
SOM - example

Iteration 0
SOM - example
SOM - example
SOM - example

Iteration 1000
SOM - example

Iteration 10000
Comparison of clustering methods

- Hierarchical clustering
 - Distances between all variables
 - Time consuming with a large number of gene
 - Advantage to cluster on selected genes

- K-means clustering
 - Faster algorithm
 - Does only show relations between all variables

- SOM
 - Machine learning algorithm
Distance measures

- Euclidian distance

\[d(x_i, y_i) = \left(\sum_{i=1}^{N} (x_i - y_i)^2 \right)^{\frac{1}{2}} \]

- Vector angle distance

\[d(x_i, y_i) = (1 - \cos \alpha) = 1 - \frac{\sum x_i y_i}{\sqrt{\sum x_i^2} \sqrt{\sum y_i^2}} \]

- Pearsons distance

\[d(x_i, y_i) = (1 - CC) = 1 - \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2} \sqrt{\sum (y_i - \bar{y})^2}} \]
Comparison of distance measures

- Euclidean
- Vector angle
- Pearson
Summary

• Dimension reduction important to visualize data

• Methods:
 – Principal Component Analysis
 – Clustering
 • Hierarchical
 • K-means
 • Self organizing maps
 (distance measure important)
DNA Microarray Analysis
Overview/Review

Normalization

Before

After

PCA (using SVD)

Cluster analysis