B CELL EPITOPES AND PREDICTIONS
OUTLINE

• What is a B-cell epitope?
• How can you predict B-cell epitopes?
WHAT IS A B-CELL EPITOPE?

- B-cell epitopes:
 - Accessible structural feature of a pathogen molecule.
 - Antibodies are developed to bind the epitope specifically using the complementary determining regions (CDRs).
THE BINDING INTERACTIONS

- Salt bridges
- Hydrogen bonds
- Hydrophobic interactions
- Van der Waals forces

Binding strength
B-CELL EPITOPE CLASSIFICATION

B-cell epitope: **structural feature of a molecule or pathogen, accessible and recognizable by B-cell receptors and antibodies**

- **Linear epitopes**
 - One segment of the amino acid chain
- **Discontinuous epitope (with linear determinant)**
- **Discontinuous epitope**
 - Several small segments brought into proximity by the protein fold

Technical University of Denmark - DTU
Department of systems biology

ECCB/ISMB-2009 - Immunological Bioinformatics Tutorial

Thursday, 11 June 2009
BINDING OF A DISCONTINUOUS EPITOPE

Antibody FAB fragment complexed with Guinea Fowl Lysozyme (1FBI).

Black: Light chain, Blue: Heavy chain, Yellow: Residues with atoms distanced < 5Å from FAB antibody fragments.

Guinea Fowl Lysozyme

KVFGRCELAAAAMKRHGLDNYRGYSGLGNWVCAAKFESNFNSQNRNTDGS
DYGVLNSRWYNDGRTPGSRNLCPNCSALSQSDITANCAKKIVSDG
GMNAWVAWRKCKGTDRVWIKGCRL
B-CELL EPITOPE ANNOTATION

• Linear epitopes:
 • Chop sequence into small pieces and measure binding to antibody

• Discontinuous epitopes:
 • Measure binding of whole protein to antibody

• The best annotation method: X-ray crystal structure of the antibody-epitope complex
B-CELL EPITOPE DATA BASES

- Databases:
 - IEDB, Los Alamos HIV database, Protein Data Bank, Antijen, BciPep

- Large amount of data available for linear epitopes

- Few data available for discontinuous
B CELL EPITOLPE PREDICTION
SEQUENCE-BASED METHODS FOR PREDICTION OF LINEAR EPITOPES

- **Protein hydrophobicity – hydrophilicity algorithms**
 - Parker, Fauchere, Janin, Kyte and Doolittle, Manavalan
 - Sweet and Eisenberg, Goldman, Engelman and Steitz (GES), von Heijne

- **Protein flexibility prediction algorithm**
 - Karplus and Schulz

- **Protein secondary structure prediction algorithms**
 - PsiPred (D. Jones)

- **Protein “antigenicity” prediction**:
 - Hopp and Woods, Welling

TSQDLSVFPLASCCKDNIASTSVTLGCLVTGYLP
MSTTVTWDTGSLNKNVTTFPTTFHETYGLHSIVS
QVTASGKWAKQRFTCSVAHAESTAINKTSACAL
NFIPPTVKLFHSSCNPVGDHTTTIQLCLISGYV
PGDMEVIWLVDGQKATNIFPYTAPGTKENGVTST
HSELNITQGEWVSQKTYTCQVYTQGFTKDEARK
CSESDPRGVTSYLSPPSPL
PROPENSITY SCALES: THE PRINCIPLE

- The Parker hydrophilicity scale

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Hydrophilicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2.46</td>
</tr>
<tr>
<td>E</td>
<td>1.86</td>
</tr>
<tr>
<td>N</td>
<td>1.64</td>
</tr>
<tr>
<td>S</td>
<td>1.50</td>
</tr>
<tr>
<td>Q</td>
<td>1.37</td>
</tr>
<tr>
<td>G</td>
<td>1.28</td>
</tr>
<tr>
<td>K</td>
<td>1.26</td>
</tr>
<tr>
<td>T</td>
<td>1.15</td>
</tr>
<tr>
<td>R</td>
<td>0.87</td>
</tr>
<tr>
<td>P</td>
<td>0.30</td>
</tr>
<tr>
<td>H</td>
<td>0.30</td>
</tr>
<tr>
<td>C</td>
<td>0.11</td>
</tr>
<tr>
<td>S</td>
<td>0.03</td>
</tr>
<tr>
<td>Y</td>
<td>-0.78</td>
</tr>
<tr>
<td>V</td>
<td>-1.27</td>
</tr>
<tr>
<td>M</td>
<td>-1.41</td>
</tr>
<tr>
<td>I</td>
<td>-2.45</td>
</tr>
<tr>
<td>F</td>
<td>-2.78</td>
</tr>
<tr>
<td>L</td>
<td>-2.87</td>
</tr>
<tr>
<td>W</td>
<td>-3.00</td>
</tr>
</tbody>
</table>

Hydrophilicity

Friday, 11 June 2009
PROPENSITY SCALES: THE PRINCIPLE

\[\frac{(-2.78 + -1.27 + 2.46 + 1.86 + 1.26 + 0.87 + 0.3)}{7} = 0.39 \]

Prediction scores:

\[
\begin{align*}
0.38 & 0.1 & 0.6 & 0.9 & 1.0 & 1.2 & 2.6 & 1.0 & 0.9 & 0.5 & -0.5 \\
\end{align*}
\]

Epitope
EVALUATION OF PERFORMANCE

1 - specificity

- reference line
- HADS-Dep.
- HADS-Anx.
- HADS-Total
Pellequer found that 50% of the epitopes in a data set of 11 proteins were located in turns.

Turn propensity scales for each position in the turn were used for epitope prediction.

Pellequer et al., Immunology letters, 1993
• Extensive evaluation of propensity scales for epitope prediction

• Conclusion:
 – Basically all the classical scales perform close to random!
 – Other methods must be used for epitope prediction
BEPIPRED

- Parker hydrophilicity scale
- PSSM
- PSSM based on linear epitopes extracted from the Antijen database
- Combination of the Parker prediction scores and PSSM leads to prediction score
- Tested on the Pellequer dataset and epitopes in the HIV Los Alamos database
PSSM

<table>
<thead>
<tr>
<th>Pos</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.28</td>
</tr>
<tr>
<td>2</td>
<td>9.39</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>5.2</td>
</tr>
<tr>
<td>5</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Sequence:

```
.....LISTFVEDEKRPGSDIVEDLILKDENKTTVI....
```

Prediction Value:

\[2.46 + 1.86 + 1.26 + 0.87 + 0.3 = 6.75\]
ROC EVALUATION

Evaluation on HIV Los Alamos data set

ROC curve for BepiPred, Parker, Levitt, and random predictions.
BEPIPRED PERFORMANCE

- **Pellequerr data set:**
 - Levitt \(\text{AROC} = 0.66 \)
 - Parker \(\text{AROC} = 0.65 \)
 - BepiPred \(\text{AROC} = 0.68 \)

- **HIV Los Alamos data set**
 - Levitt \(\text{AROC} = 0.57 \)
 - Parker \(\text{AROC} = 0.59 \)
 - BepiPred \(\text{AROC} = 0.60 \)
BEPIPRED

• BepiPred conclusion:
 • On both of the evaluation data sets, Bepipred was shown to perform better
 • Still the AROC value is low compared to T-cell epitope prediction tools!

• Bepipred is available as a webserver:
 • www.cbs.dtu.dk/services/BepiPred
Prediction of Linear Epitopes

<table>
<thead>
<tr>
<th>Pro</th>
<th>Con</th>
</tr>
</thead>
<tbody>
<tr>
<td>- easily predicted computationally</td>
<td>- only ~10% of epitopes can be classified as “linear”</td>
</tr>
<tr>
<td>- easily identified experimentally</td>
<td>- weakly immunogenic in most cases</td>
</tr>
<tr>
<td>- immunodominant epitopes in many cases</td>
<td>- most epitope peptides do not provide antigen-neutralizing immunity</td>
</tr>
<tr>
<td>- do not need 3D structural information</td>
<td>- in many cases represent hypervariable regions</td>
</tr>
<tr>
<td>- easy to produce and check binding activity experimentally</td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE BASED PREDICTION METHODS

• Linear methods for prediction of B cell epitopes have low performances
• The problem is analogous to the problems of representing the surface of the earth on a two-dimensional map
• Reduction of the dimensions leads to distortions of scales, directions, distances
• The world of B-cell epitopes is 3 dimensional and therefore more sophisticated methods must be developed

Regenmortel 1996, Meth. of Enzym. 9.
SO WHAT IS MORE SOPHISTICATED?

- Use of the three dimensional structure of the pathogen protein
- Analyze the structure to find surface exposed regions
- Additional use of information about conformational changes, glycosylation and trans-membrane helices
SOURCES OF THREE-DIMENSIONAL STRUCTURES

- Experimental determination
 - X-ray crystallography
 - NMR spectroscopy

- Structure prediction
 - Homology modeling
 - Fold recognition

- Both methods are time consuming and not easily done in a larger scale
- Less time consuming, but there is a possibility of incorrect predictions, specially in loop regions
PROTEIN STRUCTURE PREDICTION METHODS

• Homology/comparative modeling
 >25% sequence identity (seq 2 seq alignment)

• Fold-recognition
 <25% sequence identity (Psi-blast search/ PSSM 2 seq alignment)

• Ab initio structure prediction
 0% sequence identity
WHAT DOES ANTIBODIES RECOGNIZE IN A PROTEIN?

A: Everything accessible to a 10 Å probe on a protein surface

Novotny J. A static accessibility model of protein antigenicity.
THE CEP SERVER

- Conformational epitope server
 http://202.41.70.74:8080/cgi-bin/cep.pl
- Uses protein structure as input
- Finds stretches in sequences which are surface exposed
THE DISCOTOPE SERVER

• CBS server for prediction of discontinuous epitopes

• Uses protein structure as input

• Combines propensity scale values of amino acids in discontinuous epitopes with surface exposure

• http://www.cbs.dtu.dk/services/DiscoTope
DISCOTOPE

• Prediction of residues in discontinuous B cell epitopes using protein 3D structures

Pernille Haste Andersen, Morten Nielsen and Ole Lund, Protein Science 2006
A DATA SET OF DISCONTINUOUS B CELL EPITOPE

- Structures of antibodies/antigen protein complexes in the Protein DataBank

- Dr. Andrew Martin's SACS database (available at http://www.bioinf.org.uk/abs/sacs) was used to get an overview of PDB entries

- Epitopes in the data set were identified by finding residues within 4Å from heavy or light chains in the Abs

- We used homology grouping and cross-validation for the training and testing of the method to avoid biasing towards specific antigens

- The 5 sets used for cross-validated training/testing are available at: http://www.cbs.dtu.dk/suppl/immunology/DiscoTope.php

An example: The epitope of the outer surface protein A from Borrelia Burgdorferi (1OSP)
LOG-ODDS RATIOS OF AMINO ACIDS IN DISCONTINUOUS EPITOPES

Frequencies of amino acids in epitope residues compared to frequencies of non-epitope residues

Several discrepancies compared to the Parker hydrophilicity scale

Predictive performance (AUC) of B cell epitopes:
- Parker: 0.614
- Epitope log–odds: 0.634

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Parker</th>
<th>Log-odds Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>2.460</td>
<td>0.691</td>
</tr>
<tr>
<td>E</td>
<td>1.860</td>
<td>0.346</td>
</tr>
<tr>
<td>N</td>
<td>1.640</td>
<td>1.242</td>
</tr>
<tr>
<td>S</td>
<td>1.500</td>
<td>-0.145</td>
</tr>
<tr>
<td>Q</td>
<td>1.370</td>
<td>1.082</td>
</tr>
<tr>
<td>G</td>
<td>1.280</td>
<td>0.189</td>
</tr>
<tr>
<td>K</td>
<td>1.260</td>
<td>1.136</td>
</tr>
<tr>
<td>T</td>
<td>1.150</td>
<td>-0.233</td>
</tr>
<tr>
<td>R</td>
<td>0.870</td>
<td>1.180</td>
</tr>
<tr>
<td>P</td>
<td>0.300</td>
<td>1.164</td>
</tr>
<tr>
<td>H</td>
<td>0.300</td>
<td>1.098</td>
</tr>
<tr>
<td>C</td>
<td>0.110</td>
<td>-3.519</td>
</tr>
<tr>
<td>A</td>
<td>0.030</td>
<td>-1.522</td>
</tr>
<tr>
<td>Y</td>
<td>-0.780</td>
<td>0.030</td>
</tr>
<tr>
<td>V</td>
<td>-1.270</td>
<td>-1.474</td>
</tr>
<tr>
<td>M</td>
<td>-1.410</td>
<td>0.273</td>
</tr>
<tr>
<td>I</td>
<td>-2.450</td>
<td>-0.713</td>
</tr>
<tr>
<td>F</td>
<td>-2.780</td>
<td>-1.147</td>
</tr>
<tr>
<td>L</td>
<td>-2.870</td>
<td>-1.836</td>
</tr>
<tr>
<td>W</td>
<td>-3.000</td>
<td>-0.064</td>
</tr>
</tbody>
</table>

*Amino acids are listed with descending hydrophilicity using the values of the Parker scale.
DISCOTOPE: A PREDICTION METHOD USING 3D STRUCTURES

A combination method:

- Addition of epitope log-odds values of residues in spatial proximity
- Contact numbers

LIST..FVDEKRPGS DiVEd......ALILKDENKTTVI.

Contact number: 7

Sum of log-odds values

DiscoTope prediction value

-0.145 +0.691+0.346+1.136+1.180+1.164

Contact number: 7

Sum of log-odds values

DiscoTope prediction value

Technical University of Denmark - DTU
Department of systems biology

Thursday, 11 June 2009
DISCOTOPE: PREDICTION OF DISCONTINUOUS EPITOPES

- Receiver Operator Characteristics (ROC) curves were used for performance measures

- The reported performance is an average of the AUC values of the non-homologous groups of antigens:
 - Parker 0.614 Seq.-based
 - Epitope log–odds 0.634 Seq.-based
 - Contact numbers 0.647 Str.-based
 - Naccess 0.673 Str.-based
 - DiscoTope 0.711 Seq./Str.-based
EVALUATION EXAMPLE AMAI

• Apical membrane antigen 1 from *Plasmodium falciparum* (not used for training/testing)

• Two epitopes were identified using phage-display, sequence variance analysis and point-mutation

 (green backbone)

• Most residues identified as epitopes were successfully predicted by DiscoTope

 (black side chains)

DiscoTope is available as webserver:

http://www.cbs.dtu.dk/services/DiscoTope/
Recent Developments

BIOINFORMATICS APPLICATIONS NOTE

Structural bioinformatics

PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure

Michael J. Sweredoski1,2 and Pierre Baldi1,2,*

1Department of Computer Science and 2Institute for Genomics and Bioinformatics, University of California, Irvine, 92697-3435, California, USA

Software

ElliPro: a new structure-based tool for the prediction of antibody epitopes

Julia Ponomarenko*1,2, Huynh-Hoa Bui3, Wei Li, Nicholas Fusseder, Philip E Bourne1,2, Alessandro Sette4 and Bjoern Peters4

Address: 1San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA, 2Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA, 3Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, California 92008, USA and 4La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
SECONDARY STRUCTURE IN EPITOPES

Sec struct: H T B E S G I .

Log odds ratio: -0.19 0.30 0.21 -0.27 0.24 -0.04 0.00 0.17

H: Alpha-helix (hydrogen bond from residue i to residue i+4)
G: 310-helix (hydrogen bond from residue i to residue i+3)
I: Pi helix (hydrogen bond from residue i to residue i+5)
E: Extended strand
B: Beta bridge (one residue short strand)
S: Bend (five-residue bend centered at residue i)
T: H-bonded turn (3-turn, 4-turn or 5-turn)
: Coil

Guillermo Carbajosa
Thursday, 11 June 2009
Amino Acids in Epitopes

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>G</th>
<th>A</th>
<th>V</th>
<th>L</th>
<th>I</th>
<th>M</th>
<th>P</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>e/E</td>
<td>0.09</td>
<td>0.07</td>
<td>0.05</td>
<td>0.08</td>
<td>0.04</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.08</td>
<td>0.07</td>
<td>0.10</td>
<td>0.06</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.02</td>
<td>0.07</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>C</th>
<th>T</th>
<th>Q</th>
<th>N</th>
<th>H</th>
<th>Y</th>
<th>E</th>
<th>D</th>
<th>K</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>e/E</td>
<td>0.03</td>
<td>0.08</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>
DIHEDRAL ANGLES IN EPITOPES

Z-scores for number of dihedral angle combinations in epitopes vs. non epitopes

<table>
<thead>
<tr>
<th>Phi\Psi</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.47</td>
<td>0.44</td>
<td>-0.58</td>
<td>0.45</td>
<td>0.46</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.73</td>
<td>-0.79</td>
<td>0.00</td>
<td>0.83</td>
<td>1.42</td>
</tr>
<tr>
<td>2</td>
<td>-0.01</td>
<td>-0.12</td>
<td>-1.82</td>
<td>0.52</td>
<td>1.75</td>
<td>0.00</td>
<td>0.00</td>
<td>1.42</td>
<td>-0.82</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>1.82</td>
<td>-2.26</td>
<td>-1.57</td>
<td>0.48</td>
<td>0.10</td>
<td>0.00</td>
<td>-0.77</td>
<td>0.45</td>
<td>1.77</td>
<td>0.00</td>
<td>-0.82</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>1.76</td>
<td>1.75</td>
<td>-0.34</td>
<td>0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.97</td>
<td>0.16</td>
<td>0.38</td>
<td>1.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>-0.83</td>
<td>0.45</td>
<td>-1.09</td>
<td>0.57</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>1.52</td>
<td>0.00</td>
<td>1.62</td>
<td>0.72</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.60</td>
<td>1.28</td>
<td>-1.30</td>
<td>1.73</td>
<td>0.00</td>
<td>0.00</td>
<td>1.32</td>
<td>-0.89</td>
<td>-0.76</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.27</td>
<td>-0.01</td>
<td>1.67</td>
<td>-0.51</td>
<td>0.00</td>
<td>0.00</td>
<td>1.02</td>
<td>-1.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.93</td>
<td>1.21</td>
<td>-0.23</td>
<td>-3.63</td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.19</td>
<td>0.31</td>
<td>0.63</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.28</td>
<td>-0.67</td>
<td>0.33</td>
<td>0.01</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.87</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.95</td>
<td>1.71</td>
<td>-0.70</td>
<td>0.00</td>
<td>0.00</td>
<td>1.29</td>
<td>1.08</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td>1.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.86</td>
<td>-0.75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>0.42</td>
<td>0.83</td>
<td>0.28</td>
<td>1.68</td>
<td>0.00</td>
<td>0.00</td>
<td>1.03</td>
<td>-0.21</td>
<td>-0.79</td>
<td>0.83</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
RATIONAL VACCINE DESIGN

Rational Vaccine Design

>PATHOGEN PROTEIN
KVFGRCCELAAAMKRHGLDNYRGY
SLGNWVCAAKFESNF
RATIONAL B-CELL EPITOPE DESIGN

• Protein target choice

• Structural analysis of antigen

- Known structure or homology model
- Precise domain structure
- Physical annotation (flexibility, electrostatics, hydrophobicity)
- Functional annotation (sequence variations, active sites, binding sites, glycosylation sites, etc.)
RATIONAL B-CELL EPITOPE DESIGN

• Protein target choice
• Structural annotation
• Epitope prediction and ranking

- Surface accessibility
- Protrusion index
- Conserved sequence
- Glycosylation status
RATIONAL B-CELL EPITOPE DESIGN

• Protein target choice
• Structural annotation
• Epitope prediction and ranking

• Optimal Epitope presentation

- Fold minimization, or
- Design of structural mimics
- Choice of carrier (conjugates, DNA plasmids, virus like particles)
- Multiple chain protein engineering
Rational optimization of epitope-VLP chimeric proteins:

- Design a library of possible linkers (<10 aa)
- Perform global energy optimization in VLP (virus-like particle) context
- Rank according to estimated energy strain
CONCLUSIONS

• Rational vaccines can be designed to induce strong and epitope-specific B-cell responses

• Selection of protective B-cell epitopes involves structural, functional and immunogenic analysis of the pathogenic proteins

• When you can: Use protein structure for prediction

• Structural modeling tools are helpful in prediction of epitopes, design of epitope mimics and optimal epitope presentation