Who am I?

PhD student with Morten

Graduated in March 2019

Warning! I am no expert
What’s up for today?

Play with Pytorch Why is Pytorch smart? Other frameworks?
How to build an Artificial Neural Network?

• Invariant parameters
 • Input dimension
 • Output dimension
• Semi-variable
 • Loss-function
• Variable
 • # hidden layers
 • # hidden neurons
 • Activation functions
 • GD optimizations (learning rate, momentum, batch)
• Add-ons
 • Normalization
 • Regularization
 • Dropout
How do I build the best network?

You most likely won’t.
Hyper-parameter search

Methods
- Manual Search
- Grid Search
  ```python
  from sklearn.model_selection import GridSearchCV
  ```
- Random Grid Search
  ```python
  from sklearn.model_selection import RandomizedSearchCV
  ```

Evaluation
- Evolutionary Algorithms
- Bayesian Hyper-parameter Evaluation
  ```
  https://github.com/HIPS/Spearmint
  ```
Getting started

1. Load Data
2. Build Model
3. Select Hyper-parameters
4. Compile Model
5. Train Model
6. Evaluate Model
Load data
class Net(nn.Module):
 def __init__(self, n_features, n_l1):
 super(Net, self).__init__()
 self.fc1 = nn.Linear(n_features, n_l1)
 self.fc2 = nn.Linear(n_l1, 1)

 def forward(self, x):
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return x

net = Net(n_features, N_HIDDEN_NEURONS)
optimizer = optim.SGD(net.parameters(), lr=LEARNING_RATE)
criterion = nn.MSELoss()
def train():
 train_loss, valid_loss = [], []

 early_stopping = EarlyStopping(patience=PATIENCE)

 for epoch in range(EPOCHS):
 net.train()
 pred = net(x_train)
 loss = criterion(pred, y_train)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 train_loss.append(loss.data)

 batch_loss = 0
 net.eval()
 for x_valid, y_valid in valid_loader:
 pred = net(x_valid)
 loss = criterion(pred, y_valid)
 batch_loss += loss.data
 valid_loss.append(batch_loss / len(valid_loader))

 if invoice(early_stopping, valid_loss[-1], net, implement=False):
 load_checkpoints()
 break

 return net, train_loss, valid_loss
Load data
Evaluate model

net.eval()
pred = net(x_test)
loss = criterion(pred, y_test)
Evaluate model
Evaluate model
Avoid overfitting

• L2 Regularization
 optim.SGD(net.parameters(), lr=LEARNING_RATE, weight_decay=0)

• L1 Regularization
 Manual implementation using nn.L1Loss

• Dropout
 Def __init__(): self.drop_layer = nn.Dropout(p=p)
 Def Forward(): x = self.drop_layer(x)

• Batch normalization
 Def __init__(): self.batch_norm = nn.BatchNorm1d(n_neurons)
 Def Forward(): x = self.batch_norm(x)
Give it a go!