Morten Nielsen
Department of Health Technology
DTU
Course objective

"I think you should be more explicit here in step two."

"Then a miracle occurs..."
Algorithms are black-boxes

• No one knows how a neural network is trained
• No one knows how a PSSM is constructed
• Often no software exists that does exactly what you need
Where conventional algorithms fail..

- **Sequence alignment**

 1PMY._ 4 VKMLNSGPGGMMVFDPALVRLKPDBSIKFLPTDKG--HNVETIKGMAPDG
 1PLIC._ 0 IDVLLGADDGSALFVPSEFSISPGEKIVF-KNNAGFPHNIVFDEDSIPSG
 1PMY._ 54 ADYVKTTVQEQEAV---------VKFDKEGVYGFCKAPHYMMGVMVALVVV
 1PLIC._ 50 VDASKISMSSEDLNLNAPTFEVALSNKGEYSFHYCSPHQAGMGVGVTV

- **Gaps should more likely be placed in loops and not in secondary structure elements**
 - No conventional alignment algorithm can do this
Sequence motif identification

• Say you have 10 ligands known to bind a given receptor. Can you accurately characterize the binding motif from such few data?

• HMM and Gibbs samplers might do this, but what if you know a priori that some positions are more important than others for the binding?
 - Then no conventional method will work

```
RF FGGDRGAPKR G
YLDPLIRGLLARPAKLQV
KPGQPPRLLIYDASNRATGIPA
GSLFVYNITTNKYKAFLDKQ
SALLSSDITASVNCAK
PKYVHQNTLKLAT
GFKGEQGPKGEP
DVFKELKVHHAENI
SRYWAIRTRSGGI
TYSTNEIDLOLSQEDGQTIE
```
Artificial neural networks

Could an ANN be trained to simultaneously identify the binding motif and binding strength of a given peptide?

<table>
<thead>
<tr>
<th>PEPTIDE</th>
<th>IC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLTDLRIPS</td>
<td>48000</td>
</tr>
<tr>
<td>GWPYIGSRSQIIGRS</td>
<td>45000</td>
</tr>
<tr>
<td>ILVQAGEAETMTPSG</td>
<td>34000</td>
</tr>
<tr>
<td>HNWVNHAVPLAMKLI</td>
<td>120</td>
</tr>
<tr>
<td>SSTVKLRQNEFGPAR</td>
<td>8045</td>
</tr>
<tr>
<td>NMLTHSINSLISDNL</td>
<td>47560</td>
</tr>
<tr>
<td>LSSKYFNFVSPKSVS</td>
<td>4</td>
</tr>
<tr>
<td>GRWDEDGAKRIPVDV</td>
<td>49350</td>
</tr>
<tr>
<td>ACVKDLVSKYLADNE</td>
<td>86</td>
</tr>
<tr>
<td>NLYIKSIQSLISDTQ</td>
<td>67</td>
</tr>
<tr>
<td>IYGLPWMTTQTSALS</td>
<td>11</td>
</tr>
<tr>
<td>QYDVIIQHPADMSWC</td>
<td>15245</td>
</tr>
</tbody>
</table>
The Bioinformatical approach. NN-align

Refine

Calculate prediction error

Update method to
Minimize prediction error

Method

Predict binding and core

<table>
<thead>
<tr>
<th>PEPTIDE</th>
<th>Pred</th>
<th>Meas</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPLTDLRIPS</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>GWPYIGSRSQIIGRS</td>
<td>0.19</td>
<td>0.08</td>
</tr>
<tr>
<td>ILVQAGEAETTPSG</td>
<td>0.07</td>
<td>0.24</td>
</tr>
<tr>
<td>HNWVNHAVPLAMKL</td>
<td>0.77</td>
<td>0.59</td>
</tr>
<tr>
<td>SSTVKLQNEFGPAR</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>NMLTHSINSLISDNL</td>
<td>0.17</td>
<td>0.02</td>
</tr>
<tr>
<td>LSSKFNKFVSPKSVS</td>
<td>0.81</td>
<td>0.97</td>
</tr>
<tr>
<td>GRWDEDGAKRIPVDV</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>ACVKDLVSKYLADNE</td>
<td>0.58</td>
<td>0.57</td>
</tr>
<tr>
<td>NLYIKSIQSLISDTQ</td>
<td>0.84</td>
<td>0.66</td>
</tr>
<tr>
<td>IYGLPWMTTQTSAI</td>
<td>1.00</td>
<td>0.93</td>
</tr>
<tr>
<td>QYDVIIQHPADMSC</td>
<td>0.12</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Course objective

• To provide the student with an overview and in-depth understanding of bioinformatics machine-learning algorithms.

• Enable the student to first evaluate which algorithm(s) are best suited for answering a given biological question and next

• Implement and develop prediction tools based on such algorithms to describe complex biological problems such as immune system reactions, vaccine discovery, disease gene finding, protein structure and function, post-translational modifications etc.
Course program

• Weight matrices
• Sequence alignment
• Hidden Markov Models
• Sequence redundancy
• Gibbs sampling
• Stabilization matrix method
• Artificial neural networks
• Project
The Mission

• When you have completed the course, you will have
 - Worked in great detail on all the most essential algorithms used in bioinformatics
 - Have a folder with program templates implementing these algorithms
 - When you in your future scientific carrier need to implement modifications to conventional algorithms, this should give you a solid starting point
Course structure

• **Mornings**
 - Lectures and small exercises introducing the algorithms

• **Afternoons**
 - Exercise where the algorithms are implemented

• **Project work in groups of 2-3 persons**
 - The 1 week project work where a biological problem is analyzed using one or more of the algorithms introduced in the course
Course structure

Thursday, 4. June

Introduction to course, UNIX and Python programming crash course 101

Morten Nielsen

BACKGROUND TEXTS

- Python for Non-Programmers
- Python Numpy introduction

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00</td>
<td>9.15 "Recorded" Introduction to course</td>
</tr>
<tr>
<td>9.15</td>
<td>9.35 "Recorded" Introduction to the immune system</td>
</tr>
<tr>
<td>9.35</td>
<td>9.45 "Recorded" Performance measures</td>
</tr>
<tr>
<td>9.45</td>
<td>10.00 Coffe break</td>
</tr>
<tr>
<td>10.00</td>
<td>10.15 "Recorded" Some notes on sequence alignment</td>
</tr>
<tr>
<td>10.15</td>
<td>12.00 "Online" Checking that we all have python and jupyter-notebook installed and running</td>
</tr>
<tr>
<td>12.00</td>
<td>13.00 Lunch</td>
</tr>
<tr>
<td>13.00</td>
<td>17.00 "Online" Weight matrix construction</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A UNIX/Linux crash course

Handout. Estimation of pseudo counts
Programming language

• C
 - C
 • C
 - C
• Why C?
 - Nothing compares to C in speed
 • Least of all Perl and Python
 - Nothing comes for free in C
 • You in most cases cannot simply use “library” sub routines
Programming language

• C
 - C
 • C
 - C
 » C
• Why C?
 - Nothing compares to C in speed
 • Least of all Perl and Python
 - Ex. A Gibbs sampler coded in Perl runs 50 times slower than the same method coded in C
But, C is hard both to read and write
So for pedagogical reasons, I have decided to switch to python, and jupyter-notebooks
Programming language

- C code translated to Python by PhD student Brno Alvarez (brunoalvarez89@gmail.com)
• Python is NOT my preferred programming language
 - You are my test rabbits
 - Please give feedback
 - Python is slow :(
Course material

• Lund et al, MIT, chapter 3 and 4.
• Research papers
 - Check course program website for updates to course material
Course Evaluation

- Oral examination, and report
- Evaluation of report and oral examination
- Exam form
 - Group presentation of project
 - Individual “Portfolio exam” based on weekly exercises and the material of the course lectures