Artificial Neural Networks 1

Morten Nielsen
Department of Health Technology, DTU
Objectives

- Neural network:
 - is a black box that no one can understand
 - over-predicts performance
 - Overfitting - many thousand parameters fitted on few data
HUNKAT
HUNKAT
HUMAN
NETtalk
(T. Sejnowski and C. Rosenberg, 1987)

Mary had a little lamb

Three of the a’s must be pronounced differently! Reading aloud is a context sensitive cognitive skill.
A weight matrix is given as
\[W_{ij} = \log(p_{ij}/q_j) \]
where \(i \) is a position in the motif, and \(j \) an amino acid. \(q_j \) is the background frequency for amino acid \(j \).

\[
\begin{array}{ccccccccccccccccc}
A & R & N & D & C & Q & E & G & H & I & L & K & M & F & P & S & T & W & Y & V \\
1 & 0.6 & 0.4 & -3.5 & -2.4 & -0.4 & -1.9 & -2.7 & 0.3 & -1.1 & 1.0 & 0.3 & 0.0 & 1.4 & 1.2 & -2.7 & 1.4 & -1.2 & -2.0 & 1.1 & 0.7 \\
2 & -1.6 & -6.6 & -6.5 & -5.4 & -2.5 & -4.0 & -4.7 & -3.7 & -6.3 & 1.0 & 5.1 & -3.7 & 3.1 & -4.2 & -4.3 & -4.2 & -0.2 & -5.9 & -3.8 & 0.4 \\
3 & 0.2 & -1.3 & 0.1 & 1.5 & 0.0 & -1.8 & -3.3 & 0.4 & 0.5 & -1.0 & 0.3 & -2.5 & 1.2 & 1.0 & -0.1 & -0.3 & -0.5 & 3.4 & 1.6 & 0.0 \\
4 & -0.1 & -0.1 & -2.0 & 2.0 & -1.6 & 0.5 & 0.8 & 2.0 & -3.3 & 0.1 & -1.7 & -1.0 & -2.2 & -1.6 & 1.7 & -0.6 & -0.2 & 1.3 & -6.8 & -0.7 \\
5 & -1.6 & -0.1 & 0.1 & -2.2 & -1.2 & 0.4 & -0.5 & 1.9 & 1.2 & -2.2 & -0.5 & -1.3 & -2.2 & 1.7 & 1.2 & -2.5 & -0.1 & 1.7 & 1.5 & 1.0 \\
6 & -0.7 & -1.4 & -1.0 & -2.3 & 1.1 & -1.3 & -1.4 & -0.2 & -1.0 & 1.8 & 0.8 & -1.9 & 0.2 & 1.0 & -0.4 & -0.6 & 0.4 & -0.5 & -0.0 & 2.1 \\
7 & 1.1 & -3.8 & -0.2 & -1.3 & 1.3 & -0.3 & -1.3 & -1.4 & 2.1 & 0.6 & 0.7 & -5.0 & 1.1 & 0.9 & 1.3 & -0.5 & -0.9 & 2.9 & -0.4 & 0.5 \\
8 & -2.2 & 1.0 & -0.8 & -2.9 & -1.4 & 0.4 & 0.1 & -0.4 & 0.2 & -0.0 & 1.1 & -0.5 & -0.5 & 0.7 & -0.3 & 0.8 & 0.8 & -0.7 & 1.3 & -1.1 \\
9 & -0.2 & -3.5 & -6.1 & -4.5 & 0.7 & -0.8 & -2.5 & -4.0 & -2.6 & 0.9 & 2.8 & -3.0 & -1.8 & -1.4 & -6.2 & -1.9 & -1.6 & -4.9 & -1.6 & 4.5 \\
\end{array}
\]

\(W \) is a \(L \times 20 \) matrix, \(L \) is motif length.

\[
\text{SLPAIVEL} \\
\text{YLIPAIHVH} \\
\text{TLWVDPYEV}
\]
Biological Neural network
Biological neuron structure
Artificial neuron

Input signals

Synaptic weights

Threshold

Output signal

\[O = \sigma \left(\sum_{n=1}^{N} w_n I_n - t \right) \]
Transfer of biological principles to artificial neural network algorithms

- Non-linear relation between input and output
- Massively parallel information processing
- Data-driven construction of algorithms
- Ability to generalize to new data items
Linear separation by simple neural network

Two input features and one output.

\[O = \begin{cases}
1 & \text{for } w_1I_1 + w_2I_2 > t \\
0 & \text{otherwise}
\end{cases} \]

Similar to SMM, except for step function!
Linear separation by simple neural network

Two input features and one output.

\[O = \begin{cases}
1 & \text{for } w_1I_1 + w_2I_2 > t \\
0 & \text{otherwise}
\end{cases} \]

Equation \(w_1I_1 + w_2I_2 = t \) is straight line in \(I_1I_2 \)-plane:
Higher order correlations

• The effect on the binding affinity of having a given amino acid at one position can be influenced by the amino acids at other positions in the peptide (sequence correlations).
 - Two adjacent amino acids may for example compete for the space in a pocket in the MHC molecule.

• Artificial neural networks (ANN) are ideally suited to take such correlations into account
SLLPAIVEL YLLPAIVHVL TLWVDPYEV GLVPFLVSV KLLEPVLLL LLDVPTAAVL LLDVPTAAVL LLDVPTAAVL
LLDVPTAAV VLLFRGGGPRG MVDGTLLLL YMNGTSMQV MLLSVPLL LLDVPTAAV LLDVPTAAVL LLDVPTAAVL
HLIDYLVTS ILAPPVVKL ALFPQQLVIL GLGFVFTL VSTNRRQSGRQ VLDVLTAVK RILGAVAKVQV CERIPITI
ILFGHENGRV ILMEHIHKL ILDQKINEV SLAGGIIVGLL TLIENVASL FLLWATAEAL SLPPDFGISY KKKREEAPS
LERPGGNEI ALSNLEVKL ALNELQHVL DLERKVESS FGLGENSNNF ALSDHHTYLL GLSEFPTEYLL STAPPAHGV
PLDGEYFTLD VGVLPVGLAI RTLDKVLVEGL HSLSTAFARV RLDSTSYRSL YMNGTSMQV GLGFVFTL ILKEPVHG
ILGFVFTLTIL LLLGFYPVVYL GLSPTVWLGL WSLLLVPPFL FLPSDFFFPS CLGGGLTMV FIAAGNSAYE KLIQGEFNQ
KLVALGINA DLMDYFPLV RLVTLKDIV MLLAVLYCL AAGIGILTVY YLEPGPVTA LLGTATLTR ITDQVPSV
KTWGGYQVQL TITDQVPSFSA AFHVAREL YLNKIQNSL MMRKLAILE AIMDKNIIL IIMDKNIILK SMMGVAKV
SLLAPGAKQ KIFSGSAFL ELVSEFSRM KLTIQLCFTL VLYRGSFS YIKEVLVSVC CINGVCTVVMNIIQLYV
ILTVILGVKL KVLEYVIKVL FLWGPRLAG LGLSYVARL FLLTRILIT HLGNNVKLYL GAAAGGALL QLDDCMTMV
TGAPVSTYI KVQYMMMLDL VLPDFVFIRC VLPDFVFIRC AGVIGIAGVYLL VLGGLLLAV ALGLGGLLVGLIGVLAA
GAGIGVAVL IAIGIGILAE LIVIGILIV GAGIGILAVL GAGIGVLA GAGIGVILTE AAGIGVILTA AAGIGIIQI QAGIGIL
KLVALGINA DLMDYFPLV RLVTLKDIV MLLAVLYCL AAGIGILTVY YLEPGPVTA LLGTATLTR ITDQVPSV
AVFDRKSDA LLDFVRFMGGL VLVKSPNHVL GLAPPQHHL GLGRNSFEV PLTFGWYC KVLWREVFDSR TLMNQVNV
GLCTLVAML FIDSYFOQV L1SAVVGIL VMAGVSGP YLLWTLVVLV SVRDRLRLA LLMDCSGSVL CISTTVQLV
VLHDDLEELMLWITQCF LLMLWITQVQ QSLTLLWITLL QGATCMF VRLTRFLSRV YMDGTSMQV FLTPKQLQC
ISNDVCAQV VKTDDNPPE SVYDFVWVL FLYGALLA LVMFSSDFRIL LMWAKIGPV SLLLELEEVL SRSFWSWGA
YTATIPISI RLMKQDFSV RLPRIFCSC FLLGPUAYS RLLQETELV SLLFEGIDFY SLQSVVVEL RLNMFTPYI
NMFTPYIGV IYMIPLINVL TLFGSSTHV LMLVTVTTFV MLQWASLAV ILAKFLHLWLL STAPPHNVV LLLLTVLTV
VVLGQVVGFI ILMHANGAIL MIMVKCWML MLGTHMTEQV SLADNLSTLALLWARPRL GVALQTMQK
GLYDGMHEL KMVELVHFL YLQLVFGIE MLMAQEALVLM LMAQEALAFV VYDGREHTVL YLSGANVNL RMPFNAPYV
EAAGIGILTV TLDLSVESL STIPPVGTRV KVAELVHFL IMIGVLFVGL ALCRWGLLLS LFLAGVQSCQ VLIESTAV
YLSTAFARV YLLEMLWRL SLLDNYHLQV RTLDKVLQV GLPVYQLYQ KLIAANTRV FLYAGLSONL KLVANNTL
FLDEFFMEGV ALQPGTALL VLDGLDVLIL SLYSDPEPE ALEYVDSLFF SLLQHLLGL ELTLGEFLK MINAYLDDK
AAGIGILTV FLPSDFFFPS SVRDRLRLA SSLRWLLRLK LLSWILTA AAGIGILTV ACGPIEIVPL FAYDGKDYI
AAGIGILTV FLPSDFFFPS AAGIGILTV FLPSDFFFPS AAGIGILTV FLPSDFFFPS AAGIGILTV FLWPGPRLAV
ETVEQSNV ITLWQRPLV

MHC peptide binding
Mutual information

• How is mutual information calculated?
 • Information content was calculated as
 • Gives information in a single position
 \[I = \sum_{a} p_a \log \left(\frac{p_a}{q_a} \right) \]

• Similar relation for mutual information
 • Gives mutual information between two positions
 \[I = \sum_{a,b} p_{ab} \log \left(\frac{p_{ab}}{p_a \cdot p_b} \right) \]
Mutual information. Example

Knowing that you have G at P_1 allows you to make an educated guess on what you will find at P_6.

$P(V_6) = 4/10$. $P(V_6 | G_1) = 1.0$!

$$I = \sum_{a,b} p_{ab} \log\left(\frac{p_{ab}}{p_a \cdot p_b} \right)$$

$P(G_1) = 2/10 = 0.2, ..$

$P(V_6) = 4/10 = 0.4, ..$

$P(G_1, V_6) = 2/10 = 0.2,$

$P(G_1) \cdot P(V_6) = 8/100 = 0.0.8$

$log(0.2/0.08) > 0$
Mutual information
Higher order sequence correlations

- Neural networks can learn higher order correlations!
 - What does this mean?

Say that the peptide needs one and only one large amino acid in the positions P3 and P4 to fill the binding cleft.

How would you formulate this to test if a peptide can bind?

\[
\begin{align*}
S \; S & \Rightarrow 0 \\
L \; S & \Rightarrow 1 \\
S \; L & \Rightarrow 1 \\
L \; L & \Rightarrow 0
\end{align*}
\]

\[\Rightarrow \quad \text{XOR function}\]
Neural networks

- Neural networks can learn higher order correlations

XOR function:
0 0 => 0
1 0 => 1
0 1 => 1
1 1 => 0

No linear function can separate the points
Error estimates

<table>
<thead>
<tr>
<th>XOR</th>
<th>Predict</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1 1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Mean error: 1/4
Neural networks

Linear function

\[y = x_1 \cdot v_1 + x_2 \cdot v_2 \]
Neural networks with a hidden layer

\[O = \frac{1}{1 + \exp(-o)} \]

\[O = \sum_{i=1}^{N} x_i \cdot w_i + t = \sum_{i=1}^{N+1} x_i \cdot w_i \]

\[x_N = 1 \]
Neural networks

![Graph showing the relationship between MSE and iterations for different hidden layers (NH=1, NH=2).]
How does it work?
Ex. Input is (0 0)

\[O = \frac{1}{1 + \exp(-o)} \]

\[O = \sum x_i \cdot w_i \]
Neural networks. How does it work?
Neural networks (1 0 && 0 1)

\[O = \frac{1}{1 + \exp(-o)} \]

\[O = \sum x_i \cdot w_i \]
Neural networks (1 1)

\[O = \frac{1}{1 + \exp(-o)} \]

\[o = \sum x_i \cdot w_i \]
What is going on?

XOR function:
0 0 => 0
1 0 => 1
0 1 => 1
1 1 => 0

\[f_{XOR}(x_1, x_2) = -2 \cdot x_1 \cdot x_2 + (x_1 + x_2) = -y_2 + y_1 \]
What is going on?

\[y_1 = x_1 + x_2 \]
\[y_2 = 2 \cdot x_1 \cdot x_2 \]
Network with more inputs and hidden units

Input layer: I_1, I_2, \ldots, I_N

Connections: H_1, H_2, \ldots, H_M

Output layer: O_1, \ldots, O_L

Feed forward
Pattern Association

Pattern association.
Input is associated with output.
Classification, categorization, discrimination.

Goal: Find weights and thresholds.
Method: Training, not programming.

Training examples: I_j^α ($\alpha = 1, 2, \ldots; j = 1, 2, \ldots, N$).

Desired targets: T_i^α ($\alpha = 1, 2, \ldots; i = 1, 2, \ldots, M$).

Actual output: O_i^α ($\alpha = 1, 2, \ldots; i = 1, 2, \ldots, M$).

Define quadratic error

$$E = \frac{1}{2} \sum_{\alpha,i} (O_i^\alpha - T_i^\alpha)^2$$

Measures least square deviation between desired result and actual output.

Minimize error by varying weights and thresholds.

$$\delta w = -\epsilon \frac{\partial E}{\partial w}$$

Gradient descent method.
Training and error reduction

\[\delta w = -\varepsilon \frac{\partial E}{\partial w} \]

local minimum

global minimum
Training and error reduction

\[\delta w = -\varepsilon \frac{\partial E}{\partial w} \]
Training and error reduction

\[\delta w = -\epsilon \frac{\partial E}{\partial w} \]

Size matters

E vs W

global minimum

local minimum

\(\varepsilon \)
Neural network training

- A Network contains a very large set of parameters
 - A network with 5 hidden neurons predicting binding for 9meric peptides has $9 \times 20 \times 5 = 900$ weights
 - 5 times as many weights as a matrix-based method
- Over fitting is a problem
- Stop training when test performance is optimal (use early stopping)
Cross validation

Train on $\frac{4}{5}$ of data
Test on $\frac{1}{5}$

\Rightarrow
Produce 5 different neural networks each with a different prediction focus
Neural network training curve

Maximum test set performance
Most cable of generalizing
Demo
Network training

- Encoding of sequence data
 - Sparse encoding
 - Blosum encoding
 - Sequence profile encoding
Sparse encoding

<table>
<thead>
<tr>
<th>AAcid</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>N</td>
<td>D</td>
<td>C</td>
<td>Q</td>
<td>E</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>L</td>
<td>K</td>
<td>M</td>
<td>F</td>
<td>P</td>
<td>S</td>
<td>T</td>
<td>W</td>
<td>Y</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>-2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
<td>-2</td>
<td>2</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>N</td>
<td>-2</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>-4</td>
<td>-2</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>6</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>-4</td>
<td>-1</td>
<td>-3</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>9</td>
<td>-3</td>
<td>-4</td>
<td>-3</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>Q</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>5</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-4</td>
<td>2</td>
<td>5</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
<td>1</td>
<td>-2</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>6</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>H</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>8</td>
<td>-3</td>
<td>-3</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>I</td>
<td>-1</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>1</td>
<td>-3</td>
<td>-3</td>
<td>-4</td>
<td>-3</td>
<td>4</td>
<td>2</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>L</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-3</td>
<td>2</td>
<td>4</td>
<td>-2</td>
<td>2</td>
<td>0</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>5</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>M</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>5</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>0</td>
<td>6</td>
<td>-4</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
<td>-1</td>
<td>-2</td>
<td>-4</td>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>4</td>
<td>1</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>5</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>-3</td>
<td>-3</td>
<td>-4</td>
<td>-4</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>-4</td>
<td>-3</td>
<td>-2</td>
<td>11</td>
<td>2</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
<td>-2</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>-1</td>
<td>3</td>
<td>-3</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>7</td>
<td>-1</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-3</td>
<td>-3</td>
<td>3</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
<td>-1</td>
<td>4</td>
</tr>
</tbody>
</table>
Sequence encoding (continued)

- **Sparse encoding**
 - \(V: 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \)
 - \(L: 0 \)
 - \(V \cdot L = 0 \) (unrelated)

- **Blosum encoding**
 - \(V: -3 \ -3 \ -3 \ -1 \ -2 \ -2 \ -3 \ -3 \ 3 \ 1 \ -2 \ 1 \ -1 \ -2 \ -2 \ 0 \ -3 \ -1 \ 4 \)
 - \(L: -1 \ -2 \ -3 \ -4 \ -1 \ -2 \ -3 \ -4 \ -3 \ 2 \ 4 \ -2 \ 2 \ 0 \ -3 \ -2 \ -1 \ -2 \ -1 \ 1 \)
 - \(V \cdot L = 0.88 \) (highly related)
 - \(V \cdot R = -0.08 \) (close to unrelated)
One day in the fall of 1906, the British scientist Francis Galton left his home and headed for a country fair... He believed that only a very few people had the characteristics necessary to keep societies healthy. He had devoted much of his career to measuring those characteristics, in fact, in order to prove that the vast majority of people did not have them. ... Galton came across a weight-judging competition...Eight hundred people tried their luck. They were a diverse lot, butchers, farmers, clerks and many other no-experts...The crowd had guessed ... 1.197 pounds, the ox weighted 1.198
Network ensembles

- No one single network with a particular architecture and sequence encoding scheme, will constantly perform the best
- Also for Neural network predictions will enlightened despotism fail
 - For some peptides, BLOSUM encoding with a four neuron hidden layer can best predict the peptide/MHC binding, for other peptides a sparse encoded network with zero hidden neurons performs the best
 - Wisdom of the Crowd
 - Never use just one neural network
 - Use Network ensembles
Evaluation of prediction accuracy

<table>
<thead>
<tr>
<th></th>
<th>Motif</th>
<th>Sparse</th>
<th>BLOSUM</th>
<th>ENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pear</td>
<td>0.76</td>
<td>0.88</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>Aroc</td>
<td>0.92</td>
<td>0.97</td>
<td>0.97</td>
<td>0.98</td>
</tr>
</tbody>
</table>

ENS: Ensemble of neural networks trained using sparse, Blosum, and weight matrix sequence encoding
Applications of artificial neural networks

- Talk recognition
- Prediction of protein secondary structure
- Prediction of Signal peptides
- Post translation modifications
 - Glycosylation
 - Phosphorylation
- Proteasomal cleavage
- MHC:peptide binding
NETtalk
(T. Sejnowski and C. Rosenberg, 1987)

Mary had a little lamb

Three of the a’s must be pronounced differently! Reading aloud is a context sensitive cognitive skill.
Prediction of protein secondary structure

- β-strand
- Bend
- Helix
- Turn
Sparse encoding of amino acid sequence windows
Why use network ensembles?

Network ensemble with 70 networks each trained with different data, number of hidden neurons, or initial weight configurations

Q3 is the overall accuracy
Why not select the best?
What have we learned?

• Neural networks are not so bad as their reputation
• Neural networks can deal with higher order correlations
• Be careful when training a neural network
 - Over-fitting is an important issue
 - Always use cross validated training