Gradient decent. Doing it your self

Weights are changed in the opposite direction of the gradient of the error

\[w'_i = w_i + \Delta w_i \]

\[E = \frac{1}{2} \cdot (O - t)^2 \]

\[O = \sum_i w_i \cdot I_i \]

\[\Delta w_i = -\varepsilon \cdot \frac{\partial E}{\partial w_i} = -\varepsilon \cdot (O - t) \cdot I_i \]

Linear function

\[O = I_1 \cdot w_1 + I_2 \cdot w_2 \]

What are the weights after 2 forward/backward iterations with the given input, and has the error decrease (use \(\varepsilon=0.1 \), and \(t=1 \))?

\[W_1=0.1 \]

\[W_2=0.1 \]
Fill out the table

What are the weights after 2 forward/backward iterations with the given input, and has the error decrease (use $\varepsilon=0.1$, $t=1$)?

Linear function

$$O = I_1 \cdot w_1 + I_2 \cdot w_2$$

<table>
<thead>
<tr>
<th>itr</th>
<th>W1</th>
<th>W2</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>