MASTER PROJECT OFFER:

Molecular Mechanisms Regulating Ethanol-Induced Changes in Apolipoprotein Expression

Background:
- Coronary vascular disease (CVD) is the most common cause of death in industrialized countries.
- Moderate (!) alcohol consumption reduces both CVD and overall mortality (approx. 50,000 deaths/year in USA).
- This effect is mediated by enhanced transport of cholesterol from the periphery to the liver (Fig. 1).
- The molecular mechanism for this effect is unknown.

What we know:
1. Moderate alcohol consumption enhances the concentration of apolipoproteins that are produced in the liver (Fig. 2).
2. This increase is associated with a reduced risk of CVD.

=> How does ethanol regulate the expression of apolipoproteins?

Methods:
1. Cell culture
2. Isolation/purification/reverse transcription of mRNA.
3. Semi-quantitative cDNA-chip microarray technology
4. Quantitative real-time-PCR
5. Statistical evaluation/ontology annotation of chip array data

What we have to support this thesis:
1. Cells isolated from the liver of mice (C57/BL6)
2. A transcriptomics platform capable of dealing with microchip arrays for the mouse genome
3. An animal facility
4. Cell culture facility suitable for human hepatocyte cell lines.

Aim: To identify key factors of ethanol-induced changes in the apolipoprotein production profile of hepatocytes.

The project will be supervised by: Alexandr Parlesak, associate professor at DTU, Nutritional Immunology Group (NIG), Center for Biological Sequence Analysis (CBS) and is kindly supported by Laurent Gautier/Chris Workman, CBS and Lisbeth Buus Rosholm/Pernille W. Gullich, Nutritional Immunology Group (NIG)

Contact: A. Parlesak, phone ++4525 2783, e-mail: alpa@bio.dtu.dk; DTU campus, Bldg. 224, room 014.