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ABSTRACT

In order to shed light on the nature of the persistent reservoir of human immunodeficiency virus type 1 (HIV-
1), we investigated signs of recent evolution in the pool of proviral DNA in patients on successful HAART.
Pro-viral DNA, corresponding to the C2-V3-C3 region of the HIV-1 env gene, was collected from PBMCs iso-
lated from 57 patients. Both “consensus” (57 patients) and clonal (7 patients) sequences were obtained from
five time points spanning a 24-month period. The main computational strategy was to use maximum likeli-
hood to fit a set of alternative phylogenetic models to the clonal data, and then determine the support for
models that imply evolution between time points. Model fit and model-selection uncertainty was assessed us-
ing the Akaike information criterion (AIC) and Akaike weights. The consensus sequence data was also ana-
lyzed using a range of phylogenetic techniques to determine whether there were temporal trends indicating
ongoing replication and evolution. In summary, it was not possible to detect definitive signs of ongoing evo-
lution in either the bulk-sequenced or the clonal data with the methods employed here, but our results could
be consistent with localized expression of archival HIV genomes in some patients. Interestingly, stop-codons
were present at the same two positions in several independent clones and across patients. Simulation studies
indicated that this phenomenon could be explained as the result of parallel evolution and that some sites were
inherently more likely to evolve into stop codons.
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INTRODUCTION

SINCE THE INTRODUCTION OF HIGHLY ACTIVE ANTIRETROVIRAL

THERAPY (HAART), clinical management of HIV-1 infec-
tion has greatly improved.1,2 However, little is known about the
persistence of HIV-1 reservoirs during HAART and the topic
remains controversial. Persistence could be a consequence of
the long half-life of latently infected, resting CD4! T cells, but
could also be caused by a low level of ongoing replication. Be-
cause of the lack of a biochemical marker for recent HIV-1 in-
fection, most studies of this topic have been based on serially
sampled RNA or DNA. If there is ongoing replication, and if
the rate of nucleotide substitution is fairly constant across the
entire viral population, then the sequences obtained at later time
points will be progressively more distant from the root of the

phylogenetic tree. Based on assessments of this type of tempo-
ral structure in phylogenetic trees, recent evolution has been
found in some,1,3–5 but not all studies.6–8 The low abundance
of patients developing drug resistance mutations during suc-
cessful HAART supports the idea of nearly complete inhibition
of HIV-1 replication.9

In this study proviral DNA was used in lieu of viral RNA,
which is difficult to obtain from patients with low viral loads.
The coexistence of recent and archival viral variants in the pool
of proviral DNA makes it difficult to detect signs of recent evo-
lution. Here, we approach the issue as a model-selection prob-
lem.10–12 In this context it is important to realize that in essence,
a mathematical model of a biological system is simply a very
stringently phrased scientific hypothesis about how that system
works. The parameters of a mathematical model can be esti-
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mated from the data using maximum likelihood methods, and
the likelihood of a fitted model is then a measure of how well
the model describes (or “fits”) the data. A list of likelihoods
can therefore form the basis for stringently selecting one or
more models (or hypotheses) that describe the data well. It is
this general approach that we take here to decide whether our
data sets indicate the presence of ongoing replication. Specifi-
cally, we use maximum likelihood to fit a set of probabilistic
models of sequence evolution to the clonal data, and then de-
termine the support for those models that imply evolution be-
tween time points.13–15

MATERIALS AND METHODS

Study population

Fifty-seven subjects were randomly chosen from a well-char-
acterized cohort of HIV-1-infected individuals undergoing
treatment with HAART.16 The cohort was recruited between
1997 and 1998 under the inclusion criterion of a plasma viral
load " 200 copies/ml. The patients were followed for 24
months, during which blood samples were drawn every 3

months. Patients were categorized into three viremia groups
based on longitudinal plasma HIV-RNA values: group 1 had a
viral load persistently "20 copies/ml (n # 18), group 2 had one
or more samples with viral loads $20 copies/ml but " 200
copies/ml (n # 29), and group 3 had one or more samples with
viral loads $200 copies/ml (n # 10). Seven of the 57 patients
were randomly selected for clonal analysis; the patients’ char-
acteristics are detailed in Table 1.

HIV-1 RNA quantification

Plasma viral load was quantified every 3 months using an
Amplicor HIV-1 monitor (Roche Diagnostic Systems Inc.,
Branchburg, NJ). The analyses were performed in real time as
described previously.16

DNA extraction

EDTA anticoagulated whole blood was collected every 6
months, and peripheral blood mononuclear cells (PBMCs) were
isolated with lymphoprep (Nycomed Pharma A/S). The sam-
ples were stored at %80°C until use. Cellular DNA was ex-
tracted from PBMCs using whole blood specimen solution from
Roche (Roche Diagnostic Systems Inc., Branchburg, NJ).
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TABLE 1. PATIENT CHARACTERISTICS (CLONAL DATA SET)

Year of CD4! count at VL in episodes
Viremia Year of HAART Date of inclusion of low-grade

Patient group infectiona initiation inclusion (cells/!l) viremiab

64 1 1996 1997 28-01-1998 360 —
78 1 1992 1996 16-03-1998 220 —
87 2 1986 1997 12-01-1998 350 77
92 1 1987 1997 06-11-1997 540 —
101 3 1985 1997 13-11-1997 300 1160
106 1 1985 1997 08-06-1998 510 —
109 3 1989 1996 26-11-1997 110 3040, 30

aDefined as year of first positive HIV test.
bDefined as VL $ 20 copies/ml.

TABLE 2. CLONAL SEQUENCE DATA CHARACTERISTICS

Number of Number of
Number of Length of Nucleotide sequences with sequences with Best fitting

Patient sequences alignment diversitya stop in position 1b stop in position 2c model typed

64 24 372 0.025 0 NAe DR
78 36 396 0.014 1 21 Clock
87 37 387 0.013 5 0 Clock
92 34 378 0.043 6 0 DR
101 34 393 0.078 1 4 DR
106 36 381 0.047 2 0 DR
109 40 378 0.066 5 NAe DR

aAverage pairwise sequence difference per site.
bCorresponding to amino acid 338 of gp120 in the HXB2 HIV reference strain (HIV/SIV sequence locator, Los Alamos HIV

database). HXB2 context of position 1: SRAKWNNTL.
cCorresponding to amino acid 379 in gp120 of HXB2. HXB2 context of position 2: SFNCGGEFF.
dSee Table 4.
eSequence not available.



DNA amplification, cloning, and sequencing

For all patients, the C2V3C3 region of the envelope (env)
gene was amplified by nested polymerase chain reaction (PCR)
using a HOTstart taq amplification kit (Qiagen, Hilden, Ger-
many), as previously described.17 The correct size of the PCR
product (410 bp) was verified by agarose gel electrophoresis
(2.5%). All extraction and amplification steps were performed
independently and with negative controls in parallel to detect
possible contamination. Both strands were then sequenced us-
ing the ABI prism BigDye terminator Cycle sequencing Ready
Reaction Kit (Perkin Elmer Applied Biosystems, Norwalk, CT)
on the ABI Prism 377 Genetic Analyzer (Perkin Elmer). The
inner PCR primers were used for the sequencing reaction. In
seven patients the PCR products were purified using the QI-
Aprep spin miniprep kit 250 (Qiagen Ltd, UK), and cloned us-
ing the Subcloning Efficiency DH5" Chemically Competent E.
coli cells (Invitrogen Ltd, Paisley, UK) and the pGEM-T vec-
tor system I (Promega Corporation, Madison, WI). The gene
inserts were then independently amplified, with negative con-
trols in parallel to detect possible contamination, and sequenced
as described above. The seven clonal data sets contained from
24 to 40 sequences each, resulting in a total of 241 cloned se-
quences. Sequence lengths ranged from 372 to 402 with an av-
erage of 387 (Table 2).

Phylogenetic reconstruction

For each clonal data set, sequence alignments were con-
structed using the RevTrans server.18 Columns containing
stop codons or gaps were removed from the alignments. The
program MrModeltest19 was used to find the most appropri-
ate nucleotide substitution model based on the Akaike infor-
mation criterion.12 Phylogenetic trees were reconstructed by
Bayesian inference using the program MrBayes version
3.0B4.20 For each patient a consensus tree was constructed
using the clonal sequences from all five time points and
rooted using a sequence from a different patient as outgroup.
Outgroups were subsequently removed, and the trees were
used as the basis for all further analysis of the data sets. In
all cases Markov chain Monte Carlo (MCMC) sampling was
performed for 10,000,000 generations with four chains. Con-
vergence was confirmed by comparing the results of two in-
dependent runs. The program Tracer21 was used to determine
burn-in and for further confirmation of proper mixing and ad-
equate run-length of the chains. Phylogenetic trees were also
constructed in the manner described above for the three
groups of consensus sequence data.

Substitution models

The programs baseml and codeml from the PAML package
version 3.1422 were used to fit a range of nucleotide and codon-
based models to the clonal data sets using the trees mentioned
above. The nucleotide-based models tested with Baseml were
The Jukes and Cantor model (JC),23 the Kimura two-parame-
ter model (K80),24 the Felsenstein ‘81 model (F81),15 the
Felsenstein ‘84 model (F84),15 the Hasegawa, Kishino, and
Yano ‘85 model (HKY85),25 the Tamura-Nei ‘92 model
(T92),26 the Tamura-Nei ‘93 model (TN93),27 and the General
time-reversible model (REV/GTR).28,29 Each of the latter mod-
els assumes different patterns of nucleotide frequency and ex-

changeability and was tested with and without the assumption
of gamma-distributed rate-variation across sites.30 Seven
codon-based models were tested using codeml: M0, M1a, M2a,
M3, M5, M7, and M8.13,31,32 All seven models were fitted us-
ing either the F1x4 (overall nucleotide frequencies) or F3x4
(different nucleotide frequencies for each codon position) ap-
proach for estimating codon frequencies. An additional three
and nine parameters, respectively, were added to the parame-
ter count given by codeml under F1x4 and F3x4. For each of
the above-mentioned 16 (2 & 8) nucleotide models and 14 (2 &
7) codon models, we fitted three models with different as-
sumptions about temporal structure in the data (Fig. 1). The
three model types were (1) the different rates (DR) model,15

where each branch has an independent substitution rate; (2) the
single rate (SR, or “clock”) model, which assumes that all se-
quences have been isolated at the same point in time and evolves
according to a molecular clock (i.e., with a constant rate of sub-
stitution)33; and (3) the Single Rate with Dated Tips (SRDT, or
“tipdate”) model,14 which assumes that sequences have evolved
according to a molecular clock, but that individual samples have
been obtained at different times and that their distances to the
root are therefore proportional to the sampling time. The “tip-
date” model implies evolution between sample time points and
therefore indicates ongoing viral replication.34 For each data set
we thus fitted 48 nucleotide-based (3 & 2 & 8) and 42 codon-
based (3 & 2 & 7) models for a total of 90 different models that
covered a wide range of assumptions about sequence evolution.
Convergence was confirmed by comparing the results of sev-
eral independent runs started with different parameter vectors.

Model selection

The Akaike Information Criterion (AIC) was used to assess
model fits. Briefly, AIC is an estimate of the amount of infor-
mation that is lost when a given model is used to approximate
the full truth (the so-called relative Kullback–Leibler distance).
AIC is a function of the maximized log-likelihood (lnL) and
the number of estimated parameters (K) for a model. Specifi-
cally, AIC # %2lnL ! 2K with lower AIC values being better.
From AIC it is also possible to compute Akaike weights, which
can be used as the conditional probability of the model given
the data and the set of initial models. It is possible to estimate
the relative importance of a model feature by summing Akaike
weights across a subset of models sharing that feature. Infer-
ence can thus be based on a large set of models simultane-
ously.11,12 Among other things, this is helpful in avoiding the
model selection problems associated with misspecification.35

Simulation of stop-codon evolution

Simulation experiments were performed in order to investigate
whether the cooccurrence of stop codons at the same two sites in
several independent clones and patients could be the result of in-
dependent, parallel evolution. First, the maximum likelihood an-
cestral sequence for each of the seven clonal data sets was re-
constructed with the program PAUP* (version 4.0b10)36 using the
tree and substitution parameters that were estimated as part of the
Bayesian analysis. Subsequently, we simulated evolution of these
ancestral sequences along a star-tree with equal branch lengths,
again using the substitution parameters estimated from the origi-
nal data sets as part of the Bayesian analysis. The program Seq-
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Gen37 was used for simulation. All branches in any given star
phylogeny were equally long, and several different lengths were
investigated. For each set of conditions 1000 simulations were
performed, each resulting in a simulated data set that was subse-
quently analyzed for the presence of stop codons.

Analysis of viral divergence

Root-to-tip distances were extracted from the Bayesian trees for
each patient using software written by the authors. Subsequently
root-to-tip distances were plotted versus sampling time and it was
tested whether the slope was significantly different from zero.

RESULTS

To investigate whether HIV-1 continued to replicate and
evolve in patients on successful HAART, we analyzed serially
sampled, proviral DNA from PBMCs isolated from 57 patients
with different profiles of low-grade viremia. Samples were col-
lected with 6-month intervals for a period of 24 months (giv-
ing five time points). At each time point DNA corresponding
to the C2–V3–C3 region of the env gene was consensus se-
quenced. For seven patients we furthermore sequenced 5–10
different clones at each time point (Table 2).

Model-based analysis of clonal data

The main strategy for detecting signs of recent evolution in
the clonal DNA involved using maximum likelihood methods
to fit a set of alternative phylogenetic models to the data (Fig.
1), and then determining the support for the type of models that
implied evolution between time points. The phylogenetic trees
constructed for each patient are presented in Fig. 2. On the ba-
sis of these trees, a set of 90 different substitution models, with
different assumptions about how the sequences had evolved,

was fitted to each of the seven clonal data sets. We then used
an information-theoretic approach (the AIC) to assess relative
model fit and cross-model support for recent evolution.11,12

Here, the model feature we were most interested in was time
structure, i.e., how sequences obtained at different time points
are placed in the tree. If sequences obtained at later time points
show a tendency to be proportionately farther from the root,
then the tipdate model (Fig. 1) will fit the data best. This would
indicate measurable evolution between the investigated time
points, i.e., that there has been ongoing replication despite suc-
cessful HAART.14,34 A stronger statistical support for the DR
or SR models would be compatible with different scenarios of
viral evolution (see discussion).

The results of this analysis are shown in Table 3, which lists
the set of best-supported models for each of the seven clonal
data sets, and in Table 4, where the overall, cross-model sup-
port for important model features is given. In all cases between
1 and 10 models were sufficient to account for more than 95%
of the weight (Table 3). For two patients (64 and 101) codon-
type models had almost 100% cross-model support, while nu-
cleotide-type models had essentially all support in the remain-
ing five (Table 4). Cross-model support was also computed for
the three different types of time structure (tipdate, clock, and
DR). In two of the seven patients (78 and 87), the clock model
received the highest support, while the DR model more ade-
quately described the remaining five patients (Table 4). We
found no data sets where the tipdate model received more sup-
port than the alternatives, and we can therefore conclude that
we find no definitive evidence of ongoing evolution in the
clonal data using the model-based methods.

Analysis of root-to-tip distances in clonal phylogenies

As an additional test of whether the clonal data sets displayed
temporal structure, we plotted the root-to-tip distance as a func-
tion of sampling time for each phylogenetic tree (data not shown).
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FIG. 1. Schematic presentation of the three different types of time structure used in the phylogenetic models fitted to the clonal
data. The different rates model (DR) assumes that individual branches in the tree display different rates of evolution, meaning
there is no correlation between sampling time and distance from the root. The single rate, or “clock,” model assumes a constant
rate of evolution and that all sequences have been sampled at the same time and therefore have the same distance to the root.
The “tipdate,” or “Single Rate with Dated Tips,” model assumes a constant rate of evolution and that individual samples have
been obtained at different times (meaning that distance to the root is proportional to the sampling time). If the tipdate model fits
the data best, then this indicates that there has been detectable evolution between time points.



If sequences from later time points showed a general tendency to-
ward being further removed from the root of the tree, then this
was an indication that sequences had evolved between time points.
There were no cases in which these plots displayed slopes that
were significantly different from zero, again indicating a lack of
evidence for recent evolution in the clonal data.

Analysis of colocalized stop codons in clonal data

A number of stop codons were present in the set of cloned
sequences. This is to be expected since we are investigating
proviral DNA (not viral RNA), and there has consequently been
no selection for functionality subsequent to reverse transcrip-
tion and insertion in the genome. In effect, we are examining
the final result of many steps of mutation and selection fol-
lowed by a single round of unfiltered mutational processes. In-
terestingly, the 45 stop codons in the data set were all located
at only two distinct positions (Table 2). A single sequence from
patient 78 contained stop codons at both positions. These ob-
servations were puzzling, since it must be assumed that these
stop codons will lead to nonfunctional proteins, and they could
therefore not have been inherited from common ancestors. If,
on the other hand, the stop codons have evolved independently,
then it initially seemed surprising that they should all end up
at the same two positions in several independent sequences and
across six of the seven patients—especially when considering

that of the 61 sense codons 18 can be changed into stop codons
by substituting just one single nucleotide.

To investigate whether the stop codons had evolved inde-
pendently or in parallel we performed simulation experiments
using the program Seq-gen.37 Briefly, we reconstructed ances-
tral sequences for all seven clonal data sets, and then proceeded
to simulate the evolution of these. For each set of conditions
1000 simulations were performed, each resulting in a simulated
data set that was subsequently analyzed for the presence of stop
codons. If stop codons were to repeatedly evolve at a limited
number of sites in the simulated data sets, then this would in-
dicate that the observed colocalization of stop codons could in
fact have arisen by chance. The results from this analysis are
as follows. First, the site that most frequently changed into a
stop codon during simulation was a tryptophan, corresponding
to stop codon position 1 in the original data sets. This is un-
derstandable since (1) all data sets displayed high G–A substi-
tution rates, and (2) tryptophan is encoded by the singlet codon
TGG, which mutates to one of the three stop codons TAG, TGA,
or TAA when any or both Gs are substituted with an A. We
also note that TGG is in fact the only sense codon that can
change into stop as a result of a G to A mutation. Colocaliza-
tion of stop codons at position 1 is thus explained by the pres-
ence of a tryptophan codon at this position and high G–A mu-
tation rates. In the simulation for patient 78, an extra site at
position 379 of gp120 (HXB2 coordinates) was found to mu-
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FIG. 2. Bayesian phylogenetic trees constructed from serially sampled clonal sequences spanning the C2–V3–C3 region of the
env gene. White leafs represent sequences sampled at time point one, light-gray leafs represent sequences sampled at time point
two, gray leafs at time point three, dark-gray leafs at time point four, and black leafs at time point five. There is 6 months be-
tween all time points.



tate to stop with a much lower frequency. This site was found
to correspond to the stop codon at position 2 and to be a CGA
(arginine) codon. In the other patients this site was mostly oc-
cupied by AGA (arginine) or GGA (glycine) codons, although
a few sequences in the data set of patient 101 also contained
CGA codons at this position. It thus seems that the observed
colocalization of stop codons at position 2, which was observed
in patients 78 and 101, can be explained by mutation of CGA
to the stop codon TGA.

Analysis of bulk sequenced data

Five sequential consensus sequences were available for the
majority of patients. Phylogenetic trees covering all consensus
data showed sequences from each patient forming a tight clus-
ter distinct from other patients (data not shown). This indicated
the absence of contamination during PCR amplification, and
also suggested that these population averages did contain use-
ful information about the underlying sequences. The consensus

sequence trees displayed no temporal pattern, with time-de-
pendent, increasing distance from the root of the tree (data not
shown). Thus, there were no signs of evolution between time
points when examining the phylogenetic trees.

DISCUSSION

We investigated signs of recent evolution in the pool of
proviral DNA in patients on successful HAART, with the pur-
pose of shedding light on the mechanisms of viral persistence.
Proviral DNA was used in lieu of viral RNA, which is difficult
to obtain from patients with low viral loads. It is of course pos-
sible that a given piece of proviral DNA encodes a defective
virus, and we indeed observed several in-frame stop codons in
the investigated sequence data. However, proviral DNA still
contains phylogenetic information since it is, by necessity, sep-
arated by just one reverse transcription step from a virus that
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TABLE 3. BEST FITTING MODELS FOR CLONAL DATA SETS

Akaike Cumulated
Patient Model Ka lnLb AICc weightc weightd

64 DR (M3, flx4) 44 %861.2 1810.3 0.41 0.41
DR (M3, flx4) 41 %864.5 1811.1 0.28 0.69
SR (M3, flx4) 21 %885.9 1813.8 0.07 0.78
DR (M3, flx4) 50 %857.2 1814.4 0.05 0.82
SR (M5, flx4) 18 %889.3 1814.7 0.05 0.87
DR (M2, flx4) 43 %864.9 1815.8 0.03 0.90
DR (M8, flx4) 43 %864.9 1815.8 0.03 0.92
SRDT (M3, flx4) 22 %885.9 1815.9 0.03 0.95
SRDT (M5, flx4) 19 %889.4 1816.8 0.02 0.96

78 SR (TN93, #) 15 %989.7 2009.4 0.37 0.37
SR (REV, #) 18 %986.9 2009.8 0.30 0.67
SRDT (REV, #) 19 %986.1 2010.3 0.23 0.90
SRDT (TN93, #) 16 %990.4 2012.9 0.06 0.97

87 SR (REV, #) 16 %976.8 1985.6 0.72 0.72
SRDT (REV, #) 17 %977.2 1988.3 0.18 0.90
SR (TN93, #) 13 %982.0 1990.1 0.08 0.98

92 DR (REV, #) 59 %1311.0 2740.0 0.96 0.96
101 DR (M3, flx4) 68 %1934.8 4005.7 0.28 0.28

DR (M2, flx4) 67 %1936.6 4007.3 0.12 0.40
DR (M5, flx4) 65 %1938.7 4007.3 0.12 0.53
DR (M8, flx4) 67 %1936.7 4007.4 0.12 0.64
SRDT (M3, flx4) 36 %1967.9 4007.9 0.09 0.73
SRDT (M5, flx4) 33 %1971.4 4008.8 0.06 0.79
SR (M3, flx4) 35 %1969.6 4009.2 0.05 0.84
SRDT (M2, flx4) 35 %1969.7 4009.4 0.04 0.88
SRDT (M8, flx4) 35 %1969.8 4009.5 0.04 0.92
SR (M5, flx4) 32 %1973.0 4010.1 0.03 0.95

106 DR (REV, #) 67 %1396.6 2927.2 0.57 0.57
DR (TN93, #) 64 %1399.9 2927.8 0.42 0.99

109 DR (REV, #) 74 %1786.6 3721.2 0.56 0.56
DR (HKY85, #) 70 %1791.3 3722.7 0.27 0.83
DR (TN93, #) 71 %1790.9 3723.7 0.16 0.99

aNumber of parameters.
bLikelihood of model.
cAkaike information criterion.
dBest fitting models sorted by Akaike weight. For each patient we include models such that the cumulated Akaike weight is

at least 95% (the 95% credible set of models).



must have been functional. We analyzed both consensus-se-
quenced data (57 patients) and clonal data (7 patients) from sev-
eral time points spanning a 2-year period.

Analysis of consensus-sequenced proviral DNA

We found no temporal structure with sampling-time-depen-
dent, increasing distance from the root of the tree in the con-
sensus-sequence phylogenies. This is consistent with a lack of
ongoing replication. However, it should be noted that while con-
sensus sequencing is convenient for gaining information on the
average properties of a viral population, there are several draw-
backs to analyzing it. Thus, consensus sequences essentially
give a weighted average of the many different viral sequences
that are present at a given time, and it is therefore difficult to
recover information on the actual rate of substitution and other
aspects of the evolutionary dynamics of the underlying indi-
vidual sequences using this type of sequence data.

Analysis of root-to-tip distances in clonal phylogenies

As was the case for the consensus-sequenced data, we did
not observe temporal structure (i.e., sampling time-dependent,
increasing distances between root and tips) when analyzing phy-
logenies reconstructed from clonal data. This is again consis-
tent with there being no recent evolution, but again does not
prove it. Thus, the observation period (24 months) might have
been too short to observe increasing distances from the root, al-
though Günthard et al.3 found increasing root-to-tip distances
within 2 years in 3/6 patients on HAART, with suppression of
viral load to "50 copies/ml, analyzing HIV-1 RNA (before
therapy) and proviral DNA (on therapy). Frenkel et al.5 also
found increasing distance to the most recent common ancestor
in 2/10 children on HAART, with viral load "50 copies/ml,
analyzing proviral HIV-1 DNA, but here the median observa-
tion period was 5.1 years. Furthermore, we would expect to see

temporal structure in the trees only if individual sequences have
been evolving at fairly similar rates.

Model-based analysis of clonal data

When analyzing the clonal sequence data, we also asked
whether the proviral DNA sequences displayed signs of recent
evolution as a model-selection problem. This allowed us to use
rigorous, and highly sensitive, statistical methods for deter-
mining the support for a range of alternative hypotheses con-
cerning the evolution of the analyzed sequences. Specifically,
90 alternative phylogenetic models were fitted to each clonal
data set using maximum likelihood. Each model can be thought
of as a stringently phrased hypothesis about how the investi-
gated sequences have evolved. We then used the AIC to assess
cross-model support for tipdate-type models (SRDT), which im-
ply detectable evolution between time points (Fig. 1). In no
cases did tipdate receive more support than the alternatives. In-
stead the standard molecular clock model (SR) received the
most support for two data sets, while the DR model was most
highly supported for the remaining five. The DR model would
be expected to be a good description if there has been no re-
cent evolution and if the proviral DNA corresponds to archival
sequences sampled from different times in the past. However,
data sets conforming to the DR model could also be the result
of ongoing replication and evolution, if the viruses evolve at
widely different rates. It is not possible to differentiate between
these possibilities based on our sequence data and the models
used here (see below for further discussion of this point).

The two cases where the standard molecular clock received the
most support (patients 78 and 87) are potentially interesting. In
these cases the data do support clock-like evolution, but with no
detectable change accumulated during the 2-year observation pe-
riod. This is consistent with a lack of ongoing replication in the
PBMCs of these patients. Supporting this notion is the observa-
tion that these two patients are also the ones with the lowest over-
all diversity, and one of them (patient 78) was furthermore un-
usual in having a very large number of stop codons (Table 2).
Although we cannot rule out the possibility that the observation
period has been too short, it should be noted that 2 years was suf-
ficient for detecting signs of evolution in at least one other study.3

In summary, it was not possible to detect definitive signs of
ongoing evolution in either the bulk-sequenced or the clonal
data with the methods employed here.

Modeling the evolution of proviral HIV-1 DNA

It is important to note that the approach used here is quite
different from classical hypothesis testing in which a null model
is compared to an alternative model, and in which a lack of sup-
port for the alternative model does not necessarily imply that
the null model is well supported. In the AIC-based model-se-
lection framework employed here, there is no concept of null
or alternative models. Instead we investigate a whole range of
models in parallel, and determine the support (the Akaike-
weight) for each of them. As mentioned, the Akaike-weight can
be considered to be the conditional probability that a model is
the best one, given the data and the initial set of models. It is
of course important that the initial set of models is chosen care-
fully such that it has a sufficient coverage of relevant hypotheses
concerning the investigated system. While we believe that the
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TABLE 4. CROSS-MODEL SUPPORT FOR MODEL FEATURES

Type of Type of
temporal model substitution model

Patient Tipdate Clock DR Codona Nucleotideb

64 0.05 0.14 0.81 0.99 0.01
78 0.31 0.69 0.00 0.00 1.00
87 0.20 0.80 0.00 0.00 1.00
92 0.00 0.00 1.00 0.00 1.00
101 0.23 0.12 0.64 0.99 0.01
106 0.01 0.00 0.99 0.00 1.00
109 0.00 0.00 1.00 0.00 1.00

Cross-model support for different temporal model types (tip-
date, clock, and DR) and for different substitution model types
(codon and nucleotide-based). Cross-model support for a given
feature was computed by summing Akaike weights for all mod-
els including that feature.

aCodon-based substitution models (M0, M1, M2, M3, M5,
M7, and M8).

bNucleotide-based substitution models (JC, K80, K81, F84,
HKU85, TN92, TN93, and GTR/REV).



set of 90 models used in this study is well chosen in this re-
spect, it is still possible that some model details could be im-
proved. It would be especially interesting to experiment with
models that explicitly accounted for the nature of our proviral
data set. As mentioned above, the proviral DNA is at most one
reverse-transcription step separated from a functional virus, but
obviously this last step is quite different from the rest of the
evolutionary history of the viral sequence. It is possible that our
data set would be more adequately described by a model hav-
ing two sets of parameter values: one set of values would cover
the combined effects of mutation and selection during the part
of the viral phylogeny where there is ongoing replication
(viruses enter cells, collect mutations, and some functional
viruses finally get to perform the next round of infection; model
parameters would therefore represent the combined effects of
the mutation and selection steps). The other set of parameter
values would then cover the final step from entry into the cell
through reverse transcription up to insertion of the proviral
DNA. Since there is no selection for functionality during this
last step, the parameters would mostly represent the mutation
process during reverse transcription (and possibly APOBEC3G-
mediated editing), and they are therefore likely to be quite dif-
ferent from those involved in the first part of the viral life his-
tory. It is unclear whether using such models would have an
impact on the relative support for tipdate, molecular clock, and
DR-type models. In addition to providing a more accurate de-
scription of how the analyzed sequences have evolved, it would
also be interesting to use this approach as a way of obtaining
estimates of the “raw” mutational rates purged for the effects
of selection.

Analysis of colocalized stop codons in clonal data

We also investigated the occurrence of stop codons at only
two positions across several independent sequences and across
six patients. While initially puzzling, simulation studies indi-
cated that this phenomenon could be explained by the presence
of codons that were inherently more likely to change into stop
given the relatively high G–A and C–T substitution rates ob-
served in this and other HIV data sets. In particular, the single
TGG (tryptophan) codon in our data set was found to be a hot
spot for generating stop codons due to G to A mutation. High
G–A substitution rates are very likely caused by the action of
the APOBEC3G enzyme. This host-encoded enzyme is known
to deaminate cytosine residues in the first (minus polarity)
strand of reverse-transcribed viral DNA converting these cyto-
sine to uracils and resulting in G to A mutations on the plus
strand.38,39 Since tryptophan is not easily replaced by other
amino acids and since it is encoded by just one codon, namely
TGG, the virus has difficulty escaping from this hot spot by
mutation and must instead rely on the action of the Vif pro-
tein.38 The second observed stop codon (present in two of the
seven patients) was found to be explained by a CGA (arginine)
codon that was converted to the stop codon TGA due to the rel-
atively high frequency of C to T mutation. High C to T muta-
tion rates have frequently been observed in HIV data sets,40 al-
though it is unclear what the background for this phenomenon
is. While C to T mutation is also the activity displayed by
APOBEC3G, this enzyme mostly exerts its effects on the mi-
nus polarity strand due to its preference for single-stranded

DNA,38 arguing against this being the cause for the observed
C to T changes on the plus strand. It would be interesting to
determine whether an unknown enzyme is in fact responsible
for the high C to T rates.

In summary, this study shows that proviral genomes in the
pool of PBMC-derived proviral DNA from patients on suc-
cessful HAART most frequently evolve in a non-clock-like
fashion, presumably following activation and proliferation of
memory T cells. Models more accurately describing the pro-
cesses driving the evolution of the persistent reservoir are
needed to further investigate intrahost viral dynamics.

SEQUENCE DATA

GenBank accesion numbers DQ468392-642 and DQ463441-
681.
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