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Abstract

In this paper we present a novel method for using
the learning ability of a neural network as a mea-
sure of information in local regions of input data.
Using the method to analyze FEscherichéa coli
promoters, we discover all previously described
signals, and furthermore find new signals that are
regularly spaced along the promoter region. The
spacing of all signals correspond to the helical
periodicity of DNA, meaning that the signals are
all present on the same face of the DNA helix in
the promoter region. This is consistent with a
model where the RNA polymerase contacts the
promoter on one side of the DNA, and suggests
that the regions important for promoter recog-
nition may include more positions on the DNA
than usually assumed. We furthermore analyze
the E.coli promoters by calculating the Kullback
Leibler distance, and by constructing sequence
logos.

Key words: neural networks, information theory,
DNA sequence analysis, FEscherichia coli, pro-
moters.

Introduction

Initiation of transcription is the first step in gene ex-
pression, and constitutes an important point of con-
trol in the bacterium E.coli (for a review see e.g.,
(Reznikoff et al. 1985)). The initiation event takes
place when RNA polymerase—which is the enzyme
that catalyzes production of RNA from the DNA
template—recognizes and binds to certain DNA se-
quences termed promoters. The structure that consists
of RNA polymerase bound to native, double stranded
DNA is known as the closed complex. Subsequent to
the formation of the closed complex, a stretch of ap-
proximately 10 bp! is opened, yielding the open com-
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plex, and the polymerase proceeds to initiate RNA
chain synthesis by the process of complementary base
pairing. It is the sequence of the promoter that deter-
mines the precise site and orientation of the 5’ end of
the mRNA. The sequence is also an important element
in determining the frequency of initiation.

In E.coli the form of RNA polymerase that is re-
sponsible for initiating transcription has the subunit
composition as88'c. This so-called holoenzyme can
be divided into two functional components: the core
enzyme (o200, also designated E) and the sigma fac-
tor (the o polypeptide). The sigma factor plays an
important role in recognizing promoter sequences, and
after successful initiation it is released from the holoen-
zyme (Gross & Lonetto 1992). Several different sigma
factors exist, and each type recognizes a specific sub-
set of promoters with distinct nucleotide sequences. In
E.coli the large majority of promoters are recognized
by the holoenzyme Eg'°, whose sigma factor (¢7°) is
named according to the molecular weight of the protein
(70 kDa).

Comparison of E.coli promoters has led to the iden-
tification of three major conserved features: the “~10
box”, the “—35 box”, and a purine (A or G) at the ini-
tiation site (Rosenberg & Court 1979; Hawley & Mc-
Clure 1983). The —10 and —35 boxes are conserved
hexanucleotide elements that are named according to
the approximate position of their central nucleotides
relative to the transcriptional start point. The con-
sensus sequences are TTGACA for the —35 box, and
TATAAT for the —10 box. Genetical and biochem-
ical studies have demonstrated that there is a good
correlation between the proposed consensus sequences
and the effect of mutations in promoters, i.e., muta-
tions that result in a promoter that is less identical
to the consensus leads to lower levels of transcription,
while mutations that cause a promoter to be more
like the consensus has the opposite effect. The newer
and more extensive compilations of E.coli promoters
have supported this view of E.coli promoters, by suc-



cessfully aligning newly sequenced promoters against
the consensus sequences (Harley & Reynolds 1987;
Lisser & Margalit 1993). It should, however, be noted
that this procedure is likely to give a picture of E.coli
promoters that is biased towards the originally discov-
ered consensus patterns.

In this paper we present an analysis of many of the
E.col: promoter sequences known today. Specifically,
we have been interested in finding areas in the pro-
moters that contain information which correlates with
the presence of transcriptional start points. For this
purpose we have used the database of E.coli promoter
sequences (with experimentally determined transcrip-
tional start points) that was compiled by Lisser and
Margalit (Lisser & Margalit 1993). In addition to de-
termining the information content in the promoters by
the Kullback Leibler measure and by making sequence
logos, we present a novel method for using the learning
capability of an artificial neural network as a measure
of information. In order to ensure the unbiasedness of
the analysis, we presented only the experimentally de-
termined promoter characteristics (i.e., the location of
the transcriptional start point) to the networks. This
is unlike previous studies, where the concept of the —35
and —10 boxes have in some form been included in the
data—e.g., by training the network on aligned hexanu-
cleotides (Lukashin et al. 1989; Demeler & Zhou 1991;
O’Neill 1991; 1992; Horton & Kanehisa 1992; Mahade-
van & Ghosh 1994). Additionally, our approach differs
from those previously used, in that we try to predict
whether or not a given nucleotide is a transcriptional
start point, while previous studies have focused on pre-
dicting whether a given sequence is a promoter or not.
It is important to note that it is not our goal to con-
struct a neural network that has a better prediction
ability than previous networks. Rather, our goal is to
use the learning abilities of neural networks as a mea-
sure of the information content in various parts of the
promoter sequences.

The soundness of our approach is demonstrated by
the fact that we find the previously discovered sequence
signals at —10 and ~35. However, we also discover
hitherto unrecognized signals, that are correlated with
the presence of a transcriptional start point. These
signals are regularly spaced along the upstream region
of the promoter: there is approximately one turn of the
DNA helix (10.5 bp) between the central nucleotide in
each signal, consistent with a model where the RNA
polymerase contacts the promoter sequence mainly on
one face of the DNA helix.

Methods
Data

The promoter sequences were taken from the compila-
tion by Lisser and Margalit (Lisser & Margalit 1993).
This database, which contains 300 sequences, is supe-
rior to most other available E.coli promoter databases
on two accounts:

e Each sequence has been compared to the original pa-
per, minimizing the chance of database entry errors.

o For each sequence, the assignment of transcriptional
start point(s) has been verified with the relevant pa-
pers, and the most reliable have been chosen.

We processed the data in the following ways: first, we
concatenated the sequences that are partially overlap-
ping (e.g., dnaK-P1 and dnaK-P2). This removed a
number of contradictions, since the nuclectide that is
marked as a transcriptional start point in one sequence
is not labeled as such in the partially overlapping se-
quence, and vice versa. Concatenation resulted in a
subset consisting of 248 sequences. Second, we dis-
carded all the sequences that contain multiple start
points. The resulting set, which we use in this study,
contains 167 sequences. No division of the data set
was performed based on knowledge about which sigma
factor transcribes the gene. One reason for this is that
for many genes it has not been determined experimen-
tally which sigma factor is responsible for promoter
recognition.

In the experiments where a training set and a test set
were needed, the subsets were randomly divided into
two parts: the training set contained 134 sequences
(80%), while the test set contained the remaining 33
sequences. In order to ensure that the specific choice
of test set versus training set was not important for
the performance of the neural networks, the random
divisions were performed in 2 different ways, and the
results compared. The results obtained in this way
were qualitatively identical.

Negative examples were constructed by choosing se-
quences from the promoters themselves rather than by
constructing random sequence, or by using coding re-
gions of E.coli genes as it has been done in previous
studies (Lukashin et al. 1989; Demeler & Zhou 1991;
O’Neill 1991; 1992; Horton & Kanehisa 1992; Mahade-
van & Ghosh 1994). We believe that the problem
of discriminating between promoter and non-promoter
DNA in a promoter-containing region is closer to the
biological task encountered in the cell by the RNA
polymerase. Furthermore, the possibility exists that
a network trained against random sequence or coding
regions, actually learns to discriminate between sec-
ondary characteristics of the sequences, rather than to
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predict transcriptional start points in a natural con-
text. Specifically, training and test examples were con-
structed by sliding a window over the promoter se-
quences such that each positive example was preceded
and followed by several negative examples from the
same promoter. (However, it should be noted that dur-
ing training, the network is presented to these windows
in random order). In order to avoid contradictions due
to sequence signals that are not situated at a specific
distance from the transcriptional start point, we ex-
cluded all negative examples that were shifted from
the positive example by between 1 and 5 nucleotides.

Information Measures

The Kullback Leibler distance {or relative entropy) was
calculated by the formula:

) ny PN
D(i) = Z P log QlN
N t

where P and QY are the probabilities of occurrence
for a particular nucleotide N (A,C,G,T) at position
i (Kullback & Leibler 1951). The probability distri-
bution P is here taken relative to transcriptional start
points, while @ is taken relative to all other positions
in the promoter. D(:) has values that range from 0
to co. D(i) = 0 indicates that the two distributions
are identical at position 7 (i.e., there is totally average
occurrence of nucleotides at position # relative to the
transcriptional start point), while larger values of D(¢)
means that the occurrence of a nucleotide at position
i is different from the average.

Sequence logos were constructed according to
Schneider and Stephens (Schneider & Stephens 1990).
Briefly, sequence logos combine the information con-
tained in consensus sequences with a quantitative mea-
sure of information, by representing each position in
an alignment by a stack of letters. The height of the
stack is a measure of the non-randomness at the posi-
tion (here essentially the Shannon measure (Shannon
1948)), while the height of a letter corresponds to its
relative occurrence.

Neural Networks

The neural networks used in this study were of the feed-
forward type, and had three layers of neurons (Hertz,
Krogh, & Palmer 1991). We implemented the neu-
ral network programs in the C programming language,
and executed them on UNIX workstations.

Input values were obtained by encoding the DNA
sequence into a binary string, using a coding scheme
where each nucleotide is represented by 4 binary digits:
A=0001, C=0010, G=0100, T=1000 (Brunak, Engel-
brecht, & Knudsen 1991). It has been found that this
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Figure 1: Overview of the two types of neural network
architecture used in this study. The upper panel shows a
type of network with a single input window, two hidden
neurons, and one output neuron. In the example shown
the network has an input window of 5 nucleotides, which
are encoded as a string of 5.4 = 20 bits. The encoding
scheme is: A=0001, C=0010, G=0100, T=1000. In this
study, we used networks of this type with input windows
of between 1 and 51 nucleotides (between 4 and 204 bits).
The lower panel illustrates another type of network, which
has an input window covering 65 nucleotides but with a 7
nucleotide hole (although not shown, the nucleotide input
is in this case also encoded using the 4-bit scheme). In this
study we used networks of this type where the position of
the hole was varied.

leads to a significantly better performance than a more
compact coding scheme (A=00, T=01, G=10, C=11),
presumably due to the identical Hamming distances
between the nucleotide encodings (Demeler & Zhou
1991). The output layer consisted of only one neu-
ron, which decided whether the nucleotide at a given
position was a transcription initiation site or not. Out-
put values were in the range 0 to 1. During training,
transcription initiation sites were encoded as 1.0, while
non-initiation sites were encoded as 0.0. When evaluat-
ing the output, all values above 0.5 were interpreted as
“transcription initiation site” while all values smaller
than 0.5 were interpreted as “non-initiation site”. Two
main types of neural network architectures were used
during this study (Figure 1). One type contained a sin-
gle input window, the size of which was varied during
a number of different training sessions. The other type
had an input window covering 65 nucleotides except
for a 7 nucleotide long hole, the position of which was
varied during a number of different training sessions
(Figure 1).

Initially the network weights and thresholds were as-
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Figure 2: Kullback Leibler distances between the distribution of nucleotides relative to the transcriptional start points, and
relative to all other positions in the dataset as a function of the position in the promoter (transcriptional initiation site=0).
Notice the peaks around 0, —10, and —35, indicating that the occurrence of nucleotides in these regions is non-average.

signed random values in the range —0.3 to +0.3. Train-
ing of the weights and thresholds was performed using
the backpropagation algorithm, and was carried out af-
ter each training example (online training) rather than
after each training epoch (Hertz, Krogh, & Palmer
1991). Specifically, the error measure we used was

E = —~log(1- (0 -T)%)

where O is the actual output value, and 7" is the desired
target value.

After each training epoch (i.e., after all training ex-
amples have been presented to the network), the order
of the training set was shuffied randomly. This helps
the network avoid being trapped in local minima in
the error landscape. The learning rate () was fixed
at 0.02, which was found to give good performance
for all the network architectures assessed in this study.
Finally, we found that overtraining (which can be in-
terpreted as memorization of the idiosyncrasies of the
training set) could be efficiently reduced by performing
backpropagation only when the output and target val-
ues were sufficiently different. The criterium we chose
after having experimented with a range of thresholds,
was that the absolute value of the difference between
the output and the target should be above 0.1 for back-
propagation to take place.

Evaluation of Results

When different configurations of the network are to
be compared it is necessary to have a good measure of
the network’s performance. Merely comparing the per-
centage of true positives (i.e., transcription initiation
sites predicted as such) is not satisfactory: a network

that assigns all nucleotides in a sequence as transcrip-
tional initiation sites, will have a true positive ratio of
100%, but is obviously not of much use. A measure
that takes all correctly and falsely predicted initiation
sites and non-initiation sites into account, is the corre-
lation coefficient

- PN - PIN!
~ VIN+N))N+PI)(P+N)(P+ P

where P and N are the correctly predicted positives
and negatives, and P/ and N/ are the falsely predicted
positives and negatives (Mathews 1975). The correla-
tion coeflicient C is +1.0 for a perfect prediction, —1.0
for a completely imperfect prediction, and 0.0 when
uncorrelated. In the special case when N + N/ = 0
or P+ P/ = 0 (i.e., all nucleotides are predicted to
belong to the same category) C was taken to be 0.0.

Results and Discussion
Information Measures

The Kullback Leibler distance D(#) was calculated for
the 167 sequences in our data set (Figure 2). It is
obvious that non-average areas are present around po-
sitions 0, —10, and —35. This is consistent with the
positions of the conserved sequence elements described
above. When D(¢) was calculated for the distributions
of dinucleotides, the result was qualitatively identical.

Signals at 0, —10, and —35 can also be seen on the
sequence logos (Figure 3). In agreement with previ-
ous studies, the signal at the initiation site was mainly
caused by the dinucleotide CA (or more precisely: a
pyrimidine followed by a purine). The signal at —10
can be seen to be a stretch of 6-8 A’s or T’s, in good
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Figure 3: Sequence logos of the sequences in the data set. The sequences are aligned by their transcriptional initiation site
(position 0). Notice that non-random areas are present around 0, —10 and —35, and that the sequences seen in this logo are

in good agreement with previous results.

agreement with the previously determined consensus:
TATAAT. No clear consensus emerges for the signal
at —35 from this analysis. This can probably be ex-
plained in part by the fact that the position of the
—35 box, relative to the transcriptional start point,
is somewhat flexible. Consequently, the sequence will
not be clearly recognized without alignment. How-
ever, another part of the reason for the unclear consen-
sus might be that the —35 box is less well conserved
than the —10 box (Galas, Eggert, & Waterman 1985;
Harley & Reynolds 1987). It has been noted that in
E.coli promoters the most frequently occurring three-
letter word (found within a 7 bp window) is TTG,
which is present in the —35 region (Galas, Eggert, &
Waterman 1985). This can be seen to be in reasonable
agreement with our data (Figure 3).

In conclusion, we find signals that correlate with the
presence of a transcriptional start point using methods
from information theory. The position, of these signals
are consistent with the position of conserved sequence
elements that have previously been described. Addi-
tionally, the predominant nucleotides, as determined
by sequence logos, are in good agreement with the pre-
viously described consensus sequences.

Neural Networks

It is well known that neural networks are able to
learn complex correlations when they are given suitable
training examples (Brunak, Engelbrecht, & Knudsen
1990; 1991; Hertz, Krogh, & Palmer 1991). Hence, we
reasoned that if the ability of a neural network to learn
correlations from different input data is compared, it
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should be possible to determine the relative importance
of the input data in the learning process. Ie., the
ability of a network to learn can be used as a relative
measure of the information content in the input data.
Thus, it might be expected that it is practically im-
possible for a neural network to learn to predict tran-
scriptional start points if the input presented to the
network is five nucleotides present at positions —537
to —533, whereas a network whose input is sequence
around the initiation site is more likely to succeed.

The method we used to monitor the learning state
of the network was to calculate the correlation coeffi-
cient C' mentioned above. Specifically, we trained the
networks until no improvement could be observed in
the prediction of the training set. After each train-
ing epoch the test and training correlation coefficients
were calculated, and after training was stopped the
maximum test correlation coefficient obtained (Cynqz)
was noted. For each input configuration, the network
was trained five times, and the average of Cyq, Ob-
tained in this way was used as a measure of informa-
tion in the input data. The C,,,z values obtained in
different trainings on the same data were always very
similar. After having investigated architectures with
various numbers of neurons in the hidden layer, we de-
cided to use the networks with 2 or 3 hidden neurons.

The first method we used was to make series of net-
work trainings where the size of the input window was
varied in one direction from a fixed point. Thus, we
started with a window of 1 nucleotide at position +5
relative to the initiation site, and proceeded to make
successive runs where the input window was increased
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Figure 4: Varying the border of the neural network’s input window in one direction. The maximum correlation coefficient
Crmas 18 shown as a function of the position of the moving border of the input window (transcriptional initiation site=0).
The upper curve shows the results obtained by having the right border of the input window fixed at +5 relative to the
transcriptional start point, and varying the left border from +5 to —45 in steps of one nucleotide. The lower curve shows
the result when the left border is fixed at —45 and the right border is varied in the opposite direction. All Cryax values are
the average obtained after five runs with different (and random) start values for the network weights and thresholds.

in size by moving the left border in an upstream direc-
tion (Figure 4 upper panel). Following runs had win-
dows covering positions +4 to +5, +3 to +5, and so on
until the last run was performed with an input window
covering from —45 to +5. We also performed network
trainings where scanning was performed from the op-
posite direction (i.e., the fixed border was —45, and the
moving border was varied from —45 to +5, Figure 4
lower panel). We have previously used this method to
identify a signal positioned downstream of transcrip-
tional initiation sites in mammalian genes (Larsen, En-
gelbrecht, & Brunak 1995).

As it can be seen, the network is completely unable
to generalize when the input window only covers se-
quence downstream of —7 (i.e., between —7 and +5,
Figure 4 upper panel). After the moving border has
passed this position a steep increase in the learning
ability can be observed. This indicates that important
information is present around position —10, which is
in perfect agreement with what was found above, and
what has been demonstrated previously. However, no
further increase is seen in Cy,q4, after the border has
passed the —10 area (Figure 4 upper panel). When
the scanning border is varied from the opposite direc-
tion, small peaks appear on the Cy,,.-plot between
—35 and —15 (Figure 4 lower panel). However, only
after the moving border has passed the —10 area a sig-
nificant increase in Cpgz can be observed. This again

indicates that important information is present around
—10. Furthermore, the small peaks suggest that re-
gions further upstream are also important. The reason
that these less important peaks are not visible when
scanning from the opposite side, is presumably that
the additional information relative to the —10 region
is too small to be noticed.

In addition to the “border-scanning” technique, we
developed a new method for finding information-con-
taining areas: neural networks were presented with in-
put windows that covered positions —55 to +9, but
which also contained a 7 bp hole. In a series of runs,
the position of the hole was shifted along the input
window, and the maximum C values for the test set
were determined. In this manner it should be possible
to detect local regions with important information by
looking for positions of the hole that causes the learn-
ing ability to be partly destroyed. Specifically, these
positions can be seen as local minima in the plot of
Ciaz versus the position of the hole. Compared to our
other network method, this technique has the advan-
tage that a constant number of weights and thresholds
are used in the different networks. Therefore, differ-
ences in learning abilities should mainly reflect the dif-
ference between the information content of the inputs.

When scanning the input window with a hole, we
found the same areas of high information content that
was identified above. This is visible in the Cpqz plots
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Figure 5: Scanning the input window of neural networks with a 7 nucleotide hole. The maximum correlation coefficient
Cmaz is shown as a function of the position of the middle nucleotide in the hole (transcriptional initiation site=0). Notice
the local minima around position 0, —10, —22, —33, and —44, which indicate that important information is present in these
areas. All Cp,q. values are the average obtained after five runs with different (and random) start values for the network

weights and thresholds.

as clear local minima around 0, —10, and —35 (Fig-
ure 5). Interestingly, two additional minima can be
seen around positions —22 and —44. The reason that
these were not identified in the Kullback Leibler plots
or sequence logos, could be because the problem of pre-
dicting transcription initiation sites is nonlinear. Il.e.,
the signals do not consist of conserved nucleotides at
any single position, but rather of correlations between
nucleotides at different positions. A signal at —44 has
also been noticed in a previous study where E.coli pro-
moter regions were searched for conserved words of dif-
ferent sizes (Galas, Eggert, & Waterman 1985), and in
multiple alignment studies (Harley & Reynolds 1987),
but to our knowledge, a signal at —22 has never been
reported.

We find it very interesting that all the signals ob-
served in the above analysis are spaced regularly along
the promoter region with a period of 10-11 bp (po-
sitions of local minima: +1, —10, —22, —33, —44).
This spacing corresponds to the helical periodicity of
DNA, and the signals we have observed are therefore
all present on the same face of the DNA helix. This
is consistent with a model in which the RNA poly-
merase holoenzyme contacts the promoter on one face
of the DNA, as experimental studies indicate that it
does (e.g., see (Siebenlist, Simpson, & Gilbert 1980)).

Concluding Remarks

In this paper we have described a novel method for
using the learning ability of a neural network as a
measure of information: neural networks are presented
with different windows on the input data, and the
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maximum obtainable test set correlation coefficients
(Cmas) are compared. When local regions that con-
tain important information are excluded from the in-
put data, Cy,z> will be lower than when the region is
not excluded. Using a version of this method where the
data is scanned with a hole in the input window, we
have discovered what appears to be regularly spaced
signals in the promoter region of E.coli genes. Specif-
ically, the spacing we observe corresponds to the heli-
cal periodicity of B-form DNA (approx. 10.5 bp/turn),
and therefore the signals are all present on the same
face of the DNA helix. These results are in agree-
ment with previous theoretical and experimental re-
sults, which show that RNA polymerase makes im-
portant contacts with DNA at the so-called —10 and
—35 boxes, and that these are present on the same
side of the DNA (Siebenlist, Simpson, & Gilbert 1980;
Harley & Reynolds 1987). However, our results fur-
thermore suggest that the regions important for pro-
moter recognition may include more positions on the
DNA than usually assumed. The credibility of our
findings is supported by the fact that these additional
regions are all situated on the same side of the DNA
helix as the previously described —10 and —35 boxes.
It will, however, be necessary to await experimental
confirmation before any firm conclusions can be made.
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